rt-thread-official/bsp/cvitek/drivers/drv_eth.c

458 lines
11 KiB
C
Raw Normal View History

2024-04-30 05:47:50 +08:00
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024/04/25 flyingcys first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#define DBG_TAG "drv.eth"
#define DBG_LEVEL DBG_INFO
#include <rtdbg.h>
#include <lwip/sys.h>
#include <netif/ethernetif.h>
#include "drv_eth.h"
// #define ETH_TX_DUMP
// #define ETH_RX_DUMP
#define MAX_ADDR_LEN 6
#define DETECT_THREAD_PRIORITY RT_THREAD_PRIORITY_MAX - 2
#define DETECT_THREAD_STACK_SIZE 4096
2024-04-30 05:47:50 +08:00
struct _dw_eth
{
rt_uint32_t *base;
rt_uint32_t irq;
struct eth_device parent; /* inherit from ethernet device */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* interface address info, hw address */
struct rt_semaphore rx_sem;
};
static struct _dw_eth dw_eth_device = {0};
#define GMAC_BUF_LEN (1500 + 20)
static uint8_t g_mac_addr[6] = {0xf2, 0x42, 0x9f, 0xa5, 0x0a, 0x72};
static uint8_t g_mac_phy_init_finish = 0;
static eth_mac_handle_t g_mac_handle;
static eth_phy_handle_t g_phy_handle;
static uint8_t SendDataBuf[GMAC_BUF_LEN];
static uint8_t RecvDataBuf[GMAC_BUF_LEN];
static void cvi_ephy_id_init(void)
{
// set rg_ephy_apb_rw_sel 0x0804@[0]=1/APB by using APB interface
mmio_write_32(0x03009804, 0x0001);
// Release 0x0800[0]=0/shutdown
mmio_write_32(0x03009800, 0x0900);
// Release 0x0800[2]=1/dig_rst_n, Let mii_reg can be accessabile
mmio_write_32(0x03009800, 0x0904);
// PHY_ID
mmio_write_32(0x03009008, 0x0043);
mmio_write_32(0x0300900c, 0x5649);
// switch to MDIO control by ETH_MAC
mmio_write_32(0x03009804, 0x0000);
}
static int cvi_eth_mac_phy_enable(uint32_t enable)
{
eth_mac_addr_t addr;
int32_t ret;
if ((g_mac_phy_init_finish == 0) && enable)
{
/* startup mac */
ret = cvi_eth_mac_control(g_mac_handle, CSI_ETH_MAC_CONFIGURE, 1);
if (ret != 0)
{
LOG_E("Failed to control mac");
return -1;
}
/* Start up the PHY */
ret = cvi_eth_phy_power_control(g_phy_handle, CSI_ETH_POWER_FULL);
if (ret != 0)
{
LOG_E("Failed to control phy, ret:0x%d", ret);
return -1;
}
}
/* enable mac TX/RX */
ret = cvi_eth_mac_control(g_mac_handle, CSI_ETH_MAC_CONTROL_TX, enable ? 1 : 0);
if (ret != 0)
{
LOG_E("Failed to enable mac TX");
return ret;
}
ret = cvi_eth_mac_control(g_mac_handle, CSI_ETH_MAC_CONTROL_RX, enable ? 1 : 0);
if (ret != 0)
{
LOG_E("Failed to enable mac RX");
return ret;
}
/* set mac address */
rt_memcpy(addr.b, g_mac_addr, sizeof(g_mac_addr));
2024-04-30 05:47:50 +08:00
ret = cvi_eth_mac_set_macaddr(g_mac_handle, &addr);
if (ret != 0)
{
LOG_E("Failed to set mac address");
return -1;
}
/* adjust mac link parameter */
ret = cvi_eth_mac_control(g_mac_handle, DRV_ETH_MAC_ADJUST_LINK, 1);
if (ret != 0)
{
LOG_E("Failed to adjust link");
return -1;
}
return 0;
}
static int32_t fn_phy_read(uint8_t phy_addr, uint8_t reg_addr, uint16_t *data)
{
return dw_eth_mac_phy_read(g_mac_handle, phy_addr, reg_addr, data);
}
static int32_t fn_phy_write(uint8_t phy_addr, uint8_t reg_addr, uint16_t data)
{
return dw_eth_mac_phy_write(g_mac_handle, phy_addr, reg_addr, data);
}
static void dw_gmac_handler_irq(int vector, void *param)
{
gmac_dev_t *mac_dev = (gmac_dev_t *)param;
struct dw_gmac_dma_regs *dma_reg = mac_dev->priv->dma_regs_p;
uint32_t dma_status;
uint32_t event = 0;
/* no ephy or ephy link down */
if (!mac_dev->phy_dev || !mac_dev->phy_dev->link_state)
return;
/* read and clear dma interrupt */
dma_status = dma_reg->status;
/* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
dma_reg->status = dma_status & 0x1ffff;
if (dma_status & CVI_DMA_STATUS_RI)
{
LOG_D("CVI_DMA_STATUS_RI");
/* a frame has been received */
eth_device_ready(&(dw_eth_device.parent));
}
if (dma_status & CVI_DMA_STATUS_TI)
{
LOG_D("CVI_DMA_STATUS_TI");
}
if (dma_status & CVI_DMA_STATUS_ERI)
{
LOG_D("CVI_DMA_STATUS_TI");
}
}
static void phy_link_detect(void *param)
{
int link_status = -1;
int link_status_old = -1;
int ret = -1;
while (1)
{
link_status = eth_phy_update_link(g_phy_handle);
LOG_D("eth link status: %d", link_status);
if (link_status_old != link_status)
{
if (link_status == 0)
{
LOG_I("eth link up");
eth_device_linkchange(&(dw_eth_device.parent), RT_TRUE);
}
else
{
LOG_I("eth link down");
eth_device_linkchange(&(dw_eth_device.parent), RT_FALSE);
}
link_status_old = link_status;
}
rt_thread_delay(RT_TICK_PER_SECOND);
}
}
2024-04-30 05:47:50 +08:00
static rt_err_t rt_dw_eth_init(rt_device_t dev)
{
struct _dw_eth *dw_eth;
struct eth_device *eth_dev;
RT_ASSERT(dev != RT_NULL);
eth_dev = rt_container_of(dev, struct eth_device, parent);
if (eth_dev == RT_NULL)
return -RT_ERROR;
dw_eth = rt_container_of(eth_dev, struct _dw_eth, parent);
if (dw_eth == RT_NULL)
return -RT_ERROR;
/* init phy id */
cvi_ephy_id_init();
/* initialize MAC & PHY */
g_mac_handle = cvi_eth_mac_init(dw_eth->base);
if (g_mac_handle == NULL)
return -RT_ERROR;
g_phy_handle = cvi_eth_phy_init(fn_phy_read, fn_phy_write);
dw_eth_mac_connect_phy(g_mac_handle, g_phy_handle);
if (cvi_eth_mac_phy_enable(1))
{
LOG_E("PHY MAC init fail");
return -RT_ERROR;
}
rt_hw_interrupt_install(dw_eth->irq, dw_gmac_handler_irq, g_mac_handle, "e0");
rt_hw_interrupt_umask(dw_eth->irq);
LOG_D("PHY MAC init success");
rt_thread_t link_detect;
link_detect = rt_thread_create("link_detect",
phy_link_detect,
(void *)&dw_eth_device,
DETECT_THREAD_STACK_SIZE,
DETECT_THREAD_PRIORITY,
2);
if (link_detect != RT_NULL)
{
rt_thread_startup(link_detect);
}
else
{
err = -RT_ERROR;
}
2024-04-30 05:47:50 +08:00
return RT_EOK;
}
static rt_err_t rt_dw_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
if (args)
rt_memcpy(args, g_mac_addr, MAX_ADDR_LEN);
break;
default:
break;
}
return RT_EOK;
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char *msg, const struct pbuf *p)
{
const struct pbuf *q;
rt_uint32_t i, j;
rt_uint8_t *ptr;
rt_kprintf("%s %d byte\n", msg, p->tot_len);
i = 0;
for (q = p; q != RT_NULL; q = q->next)
{
ptr = q->payload;
for (j = 0; j < q->len; j++)
{
if ((i % 8) == 0)
{
rt_kprintf(" ");
}
if ((i % 16) == 0)
{
rt_kprintf("\r\n");
}
rt_kprintf("%02x ", *ptr);
i ++;
ptr ++;
}
}
rt_kprintf("\n\n");
}
#endif
struct pbuf* rt_dw_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
uint32_t i = 0;
int32_t len = cvi_eth_mac_read_frame(g_mac_handle, RecvDataBuf, GMAC_BUF_LEN);
if ((len <= 0) || (len > GMAC_BUF_LEN))
2024-04-30 05:47:50 +08:00
{
return NULL;
}
#if RT_LWIP_ETH_PAD_SIZE
len += RT_LWIP_ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p == NULL)
{
LOG_E("eth_rx: pbuf_alloc failed");
len = 0;
return NULL;
}
#if RT_LWIP_ETH_PAD_SIZE
pbuf_header(p, -RT_LWIP_ETH_PAD_SIZE); /* drop the padding word */
#endif
/* We iterate over the pbuf chain until we have read the entire
* packet into the pbuf. */
for (q = p; q != NULL; q = q->next)
{
/* Read enough bytes to fill this pbuf in the chain. The
* available data in the pbuf is given by the q->len
* variable.
* This does not necessarily have to be a memcpy, you can also preallocate
* pbufs for a DMA-enabled MAC and after receiving truncate it to the
* actually received size. In this case, ensure the tot_len member of the
* pbuf is the sum of the chained pbuf len members.
*/
rt_memcpy((u8_t*)q->payload, (u8_t*)&RecvDataBuf[i], q->len);
2024-04-30 05:47:50 +08:00
i = i + q->len;
}
if ((i != p->tot_len) || (i > len))
2024-04-30 05:47:50 +08:00
{
return NULL;
}
#ifdef ETH_RX_DUMP
packet_dump("RX dump", p);
#endif /* ETH_RX_DUMP */
return p;
}
rt_err_t rt_dw_eth_tx(rt_device_t dev, struct pbuf* p)
{
rt_err_t ret = RT_EOK;
#ifdef ETH_TX_DUMP
packet_dump("send", p);
#endif
struct pbuf *q;
uint32_t len = 0;
#if RT_LWIP_ETH_PAD_SIZE
pbuf_header(p, -RT_LWIP_ETH_PAD_SIZE); /* drop the padding word */
#endif
for (q = p; q != NULL; q = q->next)
{
/* Send the data from the pbuf to the interface, one pbuf at a
time. The size of the data in each pbuf is kept in the ->len
variable. */
MEMCPY((uint8_t *)&SendDataBuf[len], (uint8_t *)q->payload, q->len);
len = len + q->len;
if ((len > GMAC_BUF_LEN) || (len > p->tot_len))
2024-04-30 05:47:50 +08:00
{
LOG_E("rt_dw_eth_tx: error, len=%d, tot_len=%d", len, p->tot_len);
return -RT_ERROR;
}
}
if (len == p->tot_len)
2024-04-30 05:47:50 +08:00
{
if (cvi_eth_mac_send_frame(g_mac_handle, SendDataBuf, len) < 0)
ret = -RT_ERROR;
}
else
ret = -RT_ERROR;
#if RT_LWIP_ETH_PAD_SIZE
pbuf_header(p, RT_LWIP_ETH_PAD_SIZE); /* reclaim the padding word */
#endif
return ret;
}
const static struct rt_device_ops dw_eth_ops =
{
rt_dw_eth_init,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
rt_dw_eth_control
};
static int rthw_eth_init(void)
{
rt_err_t ret = RT_EOK;
dw_eth_device.base = (rt_uint32_t *)DW_MAC_BASE;
dw_eth_device.irq = DW_MAC_IRQ;
dw_eth_device.parent.parent.ops = &dw_eth_ops;
dw_eth_device.parent.eth_rx = rt_dw_eth_rx;
dw_eth_device.parent.eth_tx = rt_dw_eth_tx;
ret = rt_sem_init(&dw_eth_device.rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
if (ret != RT_EOK)
{
LOG_E("rt_sem_init failed: %d", ret);
return ret;
}
ret = eth_device_init(&dw_eth_device.parent, "e0");
if (ret != RT_EOK)
{
LOG_E("eth_device_init failed: %d", ret);
return ret;
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rthw_eth_init);