4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-15 06:19:22 +08:00

382 lines
12 KiB
C
Raw Normal View History

2017-07-01 11:33:12 +08:00
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_rtc.h"
/*******************************************************************************
* Definitions
******************************************************************************/
#define SECONDS_IN_A_DAY (86400U)
#define SECONDS_IN_A_HOUR (3600U)
#define SECONDS_IN_A_MINUTE (60U)
#define DAYS_IN_A_YEAR (365U)
#define YEAR_RANGE_START (1970U)
#define YEAR_RANGE_END (2099U)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Checks whether the date and time passed in is valid
*
* @param datetime Pointer to structure where the date and time details are stored
*
* @return Returns false if the date & time details are out of range; true if in range
*/
static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime);
/*!
* @brief Converts time data from datetime to seconds
*
* @param datetime Pointer to datetime structure where the date and time details are stored
*
* @return The result of the conversion in seconds
*/
static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime);
/*!
* @brief Converts time data from seconds to a datetime structure
*
* @param seconds Seconds value that needs to be converted to datetime format
* @param datetime Pointer to the datetime structure where the result of the conversion is stored
*/
static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime);
/*******************************************************************************
* Code
******************************************************************************/
static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime)
{
assert(datetime);
/* Table of days in a month for a non leap year. First entry in the table is not used,
* valid months start from 1
*/
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
/* Check year, month, hour, minute, seconds */
if ((datetime->year < YEAR_RANGE_START) || (datetime->year > YEAR_RANGE_END) || (datetime->month > 12U) ||
(datetime->month < 1U) || (datetime->hour >= 24U) || (datetime->minute >= 60U) || (datetime->second >= 60U))
{
/* If not correct then error*/
return false;
}
/* Adjust the days in February for a leap year */
if ((((datetime->year & 3U) == 0) && (datetime->year % 100 != 0)) || (datetime->year % 400 == 0))
{
daysPerMonth[2] = 29U;
}
/* Check the validity of the day */
if ((datetime->day > daysPerMonth[datetime->month]) || (datetime->day < 1U))
{
return false;
}
return true;
}
static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime)
{
assert(datetime);
/* Number of days from begin of the non Leap-year*/
/* Number of days from begin of the non Leap-year*/
uint16_t monthDays[] = {0U, 0U, 31U, 59U, 90U, 120U, 151U, 181U, 212U, 243U, 273U, 304U, 334U};
uint32_t seconds;
/* Compute number of days from 1970 till given year*/
seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
/* Add leap year days */
seconds += ((datetime->year / 4) - (1970U / 4));
/* Add number of days till given month*/
seconds += monthDays[datetime->month];
/* Add days in given month. We subtract the current day as it is
* represented in the hours, minutes and seconds field*/
seconds += (datetime->day - 1);
/* For leap year if month less than or equal to Febraury, decrement day counter*/
if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
{
seconds--;
}
seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) +
(datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;
return seconds;
}
static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t x;
uint32_t secondsRemaining, days;
uint16_t daysInYear;
/* Table of days in a month for a non leap year. First entry in the table is not used,
* valid months start from 1
*/
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
/* Start with the seconds value that is passed in to be converted to date time format */
secondsRemaining = seconds;
/* Calcuate the number of days, we add 1 for the current day which is represented in the
* hours and seconds field
*/
days = secondsRemaining / SECONDS_IN_A_DAY + 1;
/* Update seconds left*/
secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;
/* Calculate the datetime hour, minute and second fields */
datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
datetime->minute = secondsRemaining / 60U;
datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;
/* Calculate year */
daysInYear = DAYS_IN_A_YEAR;
datetime->year = YEAR_RANGE_START;
while (days > daysInYear)
{
/* Decrease day count by a year and increment year by 1 */
days -= daysInYear;
datetime->year++;
/* Adjust the number of days for a leap year */
if (datetime->year & 3U)
{
daysInYear = DAYS_IN_A_YEAR;
}
else
{
daysInYear = DAYS_IN_A_YEAR + 1;
}
}
/* Adjust the days in February for a leap year */
if (!(datetime->year & 3U))
{
daysPerMonth[2] = 29U;
}
for (x = 1U; x <= 12U; x++)
{
if (days <= daysPerMonth[x])
{
datetime->month = x;
break;
}
else
{
days -= daysPerMonth[x];
}
}
datetime->day = days;
}
void RTC_Init(RTC_Type *base, const rtc_config_t *config)
{
assert(config);
uint32_t reg;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_EnableClock(kCLOCK_Rtc0);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Issue a software reset if timer is invalid */
if (RTC_GetStatusFlags(RTC) & kRTC_TimeInvalidFlag)
{
RTC_Reset(RTC);
}
reg = base->CR;
/* Setup the update mode and supervisor access mode */
reg &= ~(RTC_CR_UM_MASK | RTC_CR_SUP_MASK);
reg |= RTC_CR_UM(config->updateMode) | RTC_CR_SUP(config->supervisorAccess);
#if defined(FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION) && FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION
/* Setup the wakeup pin select */
reg &= ~(RTC_CR_WPS_MASK);
reg |= RTC_CR_WPS(config->wakeupSelect);
#endif /* FSL_FEATURE_RTC_HAS_WAKEUP_PIN */
base->CR = reg;
/* Configure the RTC time compensation register */
base->TCR = (RTC_TCR_CIR(config->compensationInterval) | RTC_TCR_TCR(config->compensationTime));
}
void RTC_GetDefaultConfig(rtc_config_t *config)
{
assert(config);
/* Wakeup pin will assert if the RTC interrupt asserts or if the wakeup pin is turned on */
config->wakeupSelect = false;
/* Registers cannot be written when locked */
config->updateMode = false;
/* Non-supervisor mode write accesses are not supported and will generate a bus error */
config->supervisorAccess = false;
/* Compensation interval used by the crystal compensation logic */
config->compensationInterval = 0;
/* Compensation time used by the crystal compensation logic */
config->compensationTime = 0;
}
status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
{
assert(datetime);
/* Return error if the time provided is not valid */
if (!(RTC_CheckDatetimeFormat(datetime)))
{
return kStatus_InvalidArgument;
}
/* Set time in seconds */
base->TSR = RTC_ConvertDatetimeToSeconds(datetime);
return kStatus_Success;
}
void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t seconds = 0;
seconds = base->TSR;
RTC_ConvertSecondsToDatetime(seconds, datetime);
}
status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
{
assert(alarmTime);
uint32_t alarmSeconds = 0;
uint32_t currSeconds = 0;
/* Return error if the alarm time provided is not valid */
if (!(RTC_CheckDatetimeFormat(alarmTime)))
{
return kStatus_InvalidArgument;
}
alarmSeconds = RTC_ConvertDatetimeToSeconds(alarmTime);
/* Get the current time */
currSeconds = base->TSR;
/* Return error if the alarm time has passed */
if (alarmSeconds < currSeconds)
{
return kStatus_Fail;
}
/* Set alarm in seconds*/
base->TAR = alarmSeconds;
return kStatus_Success;
}
void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t alarmSeconds = 0;
/* Get alarm in seconds */
alarmSeconds = base->TAR;
RTC_ConvertSecondsToDatetime(alarmSeconds, datetime);
}
void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
{
/* The alarm flag is cleared by writing to the TAR register */
if (mask & kRTC_AlarmFlag)
{
base->TAR = 0U;
}
/* The timer overflow flag is cleared by initializing the TSR register.
* The time counter should be disabled for this write to be successful
*/
if (mask & kRTC_TimeOverflowFlag)
{
base->TSR = 1U;
}
/* The timer overflow flag is cleared by initializing the TSR register.
* The time counter should be disabled for this write to be successful
*/
if (mask & kRTC_TimeInvalidFlag)
{
base->TSR = 1U;
}
}
#if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)
{
assert(counter);
*counter = (((uint64_t)base->MCHR << 32) | ((uint64_t)base->MCLR));
}
void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)
{
/* Prepare to initialize the register with the new value written */
base->MER &= ~RTC_MER_MCE_MASK;
base->MCHR = (uint32_t)((counter) >> 32);
base->MCLR = (uint32_t)(counter);
}
status_t RTC_IncrementMonotonicCounter(RTC_Type *base)
{
if (base->SR & (RTC_SR_MOF_MASK | RTC_SR_TIF_MASK))
{
return kStatus_Fail;
}
/* Prepare to switch to increment mode */
base->MER |= RTC_MER_MCE_MASK;
/* Write anything so the counter increments*/
base->MCLR = 1U;
return kStatus_Success;
}
#endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */