rt-thread-official/bsp/hc32/libraries/hc32_drivers/drv_can.c

672 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
* Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
* 2022-06-07 xiaoxiaolisunny add hc32f460 series
* 2022-06-08 CDT fix a bug of RT_CAN_CMD_SET_FILTER
* 2022-06-15 lianghongquan fix bug, FILTER_COUNT, RT_CAN_CMD_SET_FILTER, interrupt setup and processing.
*/
#include "drv_can.h"
#include <drv_config.h>
#include <board_config.h>
#ifdef BSP_USING_CAN
#define LOG_TAG "drv_can"
#if !defined(BSP_USING_CAN1) && !defined(BSP_USING_CAN2)
#error "Please define at least one BSP_USING_CANx"
#endif
#if defined (HC32F4A0)
#define FILTER_COUNT (16)
#define CAN1_INT_SRC (INT_SRC_CAN1_HOST)
#define CAN2_INT_SRC (INT_SRC_CAN2_HOST)
#endif
#if defined (HC32F460)
#define FILTER_COUNT (8)
#define CAN1_INT_SRC (INT_SRC_CAN_INT)
#endif
enum
{
#ifdef BSP_USING_CAN1
CAN1_INDEX,
#endif
#ifdef BSP_USING_CAN2
CAN2_INDEX,
#endif
CAN_INDEX_MAX,
};
struct can_baud_rate_tab
{
rt_uint32_t baud_rate;
stc_can_bit_time_config_t ll_sbt;
};
static const struct can_baud_rate_tab g_baudrate_tab[] =
{
{CAN1MBaud, CAN_BIT_TIME_CONFIG_1M_BAUD},
{CAN800kBaud, CAN_BIT_TIME_CONFIG_800K_BAUD},
{CAN500kBaud, CAN_BIT_TIME_CONFIG_500K_BAUD},
{CAN250kBaud, CAN_BIT_TIME_CONFIG_250K_BAUD},
{CAN125kBaud, CAN_BIT_TIME_CONFIG_125K_BAUD},
{CAN100kBaud, CAN_BIT_TIME_CONFIG_100K_BAUD},
{CAN50kBaud, CAN_BIT_TIME_CONFIG_50K_BAUD},
{CAN20kBaud, CAN_BIT_TIME_CONFIG_20K_BAUD},
{CAN10kBaud, CAN_BIT_TIME_CONFIG_10K_BAUD},
};
typedef struct
{
struct rt_can_device rt_can;
struct can_dev_init_params init;
CM_CAN_TypeDef *instance;
stc_can_init_t ll_init;
} can_device;
static can_device g_can_dev_array[] =
{
#if defined (HC32F4A0)
#ifdef BSP_USING_CAN1
{
{0},
CAN1_INIT_PARAMS,
.instance = CM_CAN1,
},
#endif
#ifdef BSP_USING_CAN2
{
{0},
CAN2_INIT_PARAMS,
.instance = CM_CAN2,
},
#endif
#endif
#if defined (HC32F460)
#ifdef BSP_USING_CAN1
{
{0},
CAN1_INIT_PARAMS,
.instance = CM_CAN,
},
#endif
#endif
};
static rt_uint32_t _get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(g_baudrate_tab) / sizeof(g_baudrate_tab[0]);
for (index = 0; index < len; index++)
{
if (g_baudrate_tab[index].baud_rate == baud)
return index;
}
return 0; /* default baud is CAN1MBaud */
}
static rt_uint32_t _get_can_work_mode(rt_uint32_t mode)
{
rt_uint32_t work_mode;
switch (mode)
{
case RT_CAN_MODE_NORMAL:
work_mode = CAN_WORK_MD_NORMAL;
break;
case RT_CAN_MODE_LISTEN:
work_mode = CAN_WORK_MD_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
work_mode = CAN_WORK_MD_ELB;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
work_mode = CAN_WORK_MD_ELB_SILENT;
break;
default:
work_mode = CAN_WORK_MD_NORMAL;
break;
}
return work_mode;
}
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
rt_uint32_t baud_index;
can_device *p_can_dev;
rt_err_t rt_ret = RT_EOK;
RT_ASSERT(can);
RT_ASSERT(cfg);
p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(cfg->mode);
baud_index = _get_can_baud_index(cfg->baud_rate);
p_can_dev->ll_init.stcBitCfg = g_baudrate_tab[baud_index].ll_sbt;
/* init can */
int32_t ret = CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
if (ret != LL_OK)
{
rt_ret = RT_EINVAL;
}
return rt_ret;
}
static uint16_t _get_filter_idx(struct rt_can_filter_config *filter_cfg)
{
uint16_t u16FilterSelected = 0;
for (int i = 0; i < filter_cfg->count; i++)
{
if (filter_cfg->items[i].hdr != -1)
{
u16FilterSelected |= 1 << filter_cfg->items[i].hdr;
}
}
for (int i = 0; i < filter_cfg->count; i++)
{
if (filter_cfg->items[i].hdr == -1)
{
for (int j = 0; j < FILTER_COUNT; j++)
{
if ((u16FilterSelected & 1 << j) == 0)
{
filter_cfg->items[i].hdr = j;
u16FilterSelected |= 1 << filter_cfg->items[i].hdr;
break;
}
}
}
}
return u16FilterSelected;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
can_device *p_can_dev;
rt_uint32_t argval;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
switch (argval)
{
case RT_DEVICE_FLAG_INT_RX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, DISABLE);
break;
case RT_DEVICE_FLAG_INT_TX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, DISABLE);
break;
case RT_DEVICE_CAN_INT_ERR:
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, DISABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, DISABLE);
break;
default:
break;
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
switch (argval)
{
case RT_DEVICE_FLAG_INT_RX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, ENABLE);
break;
case RT_DEVICE_FLAG_INT_TX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, ENABLE);
break;
case RT_DEVICE_CAN_INT_ERR:
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, ENABLE);
CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, ENABLE);
break;
default:
break;
}
break;
case RT_CAN_CMD_SET_FILTER:
if (RT_NULL != arg)
{
filter_cfg = (struct rt_can_filter_config *)arg;
if (filter_cfg->count == 0)
{
return -RT_EINVAL;
}
RT_ASSERT(filter_cfg->count <= FILTER_COUNT);
/* get default filter */
if (p_can_dev->ll_init.pstcFilter)
{
p_can_dev->ll_init.u16FilterSelect = _get_filter_idx(filter_cfg);
for (int i = 0; i < filter_cfg->count; i++)
{
p_can_dev->ll_init.pstcFilter[i].u32ID = filter_cfg->items[i].id & 0x1FFFFFFF;
/* rt-thread CAN mask, 1 mean filer, 0 mean ignore. *
* HDSC HC32 CAN mask, 0 mean filer, 1 mean ignore. */
p_can_dev->ll_init.pstcFilter[i].u32IDMask = (~filter_cfg->items[i].mask) & 0x1FFFFFFF;
switch (filter_cfg->items[i].ide)
{
case (RT_CAN_STDID):
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD;
break;
case (RT_CAN_EXTID):
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_EXT;
break;
default:
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD_EXT;
break;
}
}
}
(void)CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
break;
}
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISTEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISTEN)
{
return -RT_ERROR;
}
if (argval != p_can_dev->rt_can.config.mode)
{
p_can_dev->rt_can.config.mode = argval;
_can_config(can, &p_can_dev->rt_can.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != p_can_dev->rt_can.config.baud_rate)
{
p_can_dev->rt_can.config.baud_rate = argval;
_can_config(can, &p_can_dev->rt_can.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != p_can_dev->rt_can.config.privmode)
{
p_can_dev->rt_can.config.privmode = argval;
return _can_config(can, &p_can_dev->rt_can.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
struct rt_can_status *rt_can_stat = (struct rt_can_status *)arg;
stc_can_error_info_t stcErr = {0};
CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
rt_can_stat->rcverrcnt = stcErr.u8RxErrorCount;
rt_can_stat->snderrcnt = stcErr.u8TxErrorCount;
rt_can_stat->lasterrtype = stcErr.u8ErrorType;
rt_can_stat->errcode = CAN_GetStatusValue(p_can_dev->instance);
}
break;
default:
break;
}
return RT_EOK;
}
static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
stc_can_tx_frame_t stc_tx_frame = {0};
int32_t ll_ret;
RT_ASSERT(can != RT_NULL);
can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
stc_tx_frame.u32ID = pmsg->id;
if (RT_CAN_DTR == pmsg->rtr)
{
stc_tx_frame.RTR = 0;
}
else
{
stc_tx_frame.RTR = 1;
}
/* Set up the DLC */
stc_tx_frame.DLC = pmsg->len & 0x0FU;
/* Set up the IDE */
stc_tx_frame.IDE = pmsg->ide;
/* Set up the data field */
rt_memcpy(&stc_tx_frame.au8Data, pmsg->data, sizeof(stc_tx_frame.au8Data));
ll_ret = CAN_FillTxFrame(p_can_dev->instance, CAN_TX_BUF_PTB, &stc_tx_frame);
if (ll_ret != LL_OK)
{
return RT_ERROR;
}
/* Request transmission */
CAN_StartTx(p_can_dev->instance, CAN_TX_REQ_PTB);
return RT_EOK;
}
static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
int32_t ll_ret;
struct rt_can_msg *pmsg;
stc_can_rx_frame_t ll_rx_frame;
RT_ASSERT(can != RT_NULL);
can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
pmsg = (struct rt_can_msg *) buf;
/* get data */
ll_ret = CAN_GetRxFrame(p_can_dev->instance, &ll_rx_frame);
if (ll_ret != LL_OK)
return -RT_ERROR;
/* get id */
if (0 == ll_rx_frame.IDE)
{
pmsg->ide = RT_CAN_STDID;
}
else
{
pmsg->ide = RT_CAN_EXTID;
}
pmsg->id = ll_rx_frame.u32ID;
/* get type */
if (0 == ll_rx_frame.RTR)
{
pmsg->rtr = RT_CAN_DTR;
}
else
{
pmsg->rtr = RT_CAN_RTR;
}
/* get len */
pmsg->len = ll_rx_frame.DLC;
/* get hdr */
pmsg->hdr = 0;
rt_memcpy(pmsg->data, &ll_rx_frame.au8Data, ll_rx_frame.DLC);
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
static void _can_isr(can_device *p_can_dev)
{
stc_can_error_info_t stcErr;
(void)CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_OFF) == SET)
{
/* BUS OFF. */
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_INT) == SET)
{
/* ERROR. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_INT);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) == SET)
{
/* BUS ERROR. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE) == SET)
{
/* error-passive to error-active or error-active to error-passive. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF) == SET)
{
/* RX overflow. */
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RXOF_IND);
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_BUF_FULL) == SET)
{
/* TX buffer full. */
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED) == SET)
{
/* TX aborted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) == SET)
{
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_FAIL);
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_STB_TX) == SET)
{
/* STB transmitted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_STB_TX);
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_PTB_TX) == SET)
{
/* PTB transmitted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_PTB_TX);
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX) == SET)
{
/* Received a frame. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX);
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RX_IND);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN) == SET)
{
/* RX buffer warning. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL) == SET)
{
/* RX buffer full. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN) == SET)
{
/* RX buffer overrun. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN) == SET)
{
/* TEC or REC reached warning limit. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN);
}
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG) == SET)
{
/* Time trigger interrupt. */
CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG);
}
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TRIG_ERR) == SET)
{
/* Trigger error interrupt. */
}
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG) == SET)
{
/* Watch trigger interrupt. */
CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG);
}
}
#if defined(BSP_USING_CAN1)
static void _can1_irq_handler(void)
{
rt_interrupt_enter();
_can_isr(&g_can_dev_array[CAN1_INDEX]);
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_CAN2)
static void _can2_irq_handler(void)
{
rt_interrupt_enter();
_can_isr(&g_can_dev_array[CAN2_INDEX]);
rt_interrupt_leave();
}
#endif
static void _can_clock_enable(void)
{
#if defined(HC32F4A0)
#if defined(BSP_USING_CAN1)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN1, ENABLE);
#endif
#if defined(BSP_USING_CAN2)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN2, ENABLE);
#endif
#endif
#if defined(HC32F460)
#if defined(BSP_USING_CAN1)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN, ENABLE);
#endif
#endif
}
static void _can_irq_config(void)
{
struct hc32_irq_config irq_config;
#if defined(BSP_USING_CAN1)
irq_config.irq_num = BSP_CAN1_IRQ_NUM;
irq_config.int_src = CAN1_INT_SRC;
irq_config.irq_prio = BSP_CAN1_IRQ_PRIO;
/* register interrupt */
hc32_install_irq_handler(&irq_config,
_can1_irq_handler,
RT_TRUE);
#endif
#if defined(BSP_USING_CAN2)
irq_config.irq_num = BSP_CAN2_IRQ_NUM;
irq_config.int_src = CAN2_INT_SRC;
irq_config.irq_prio = BSP_CAN2_IRQ_PRIO;
/* register interrupt */
hc32_install_irq_handler(&irq_config,
_can2_irq_handler,
RT_TRUE);
#endif
}
extern rt_err_t rt_hw_board_can_init(CM_CAN_TypeDef *CANx);
extern void CanPhyEnable(void);
int rt_hw_can_init(void)
{
struct can_configure rt_can_config = CANDEFAULTCONFIG;
rt_can_config.privmode = RT_CAN_MODE_NOPRIV;
rt_can_config.ticks = 50;
#ifdef RT_CAN_USING_HDR
rt_can_config.maxhdr = FILTER_COUNT;
#endif
_can_irq_config();
_can_clock_enable();
CanPhyEnable();
int result = RT_EOK;
uint32_t i = 0;
for (; i < CAN_INDEX_MAX; i++)
{
CAN_StructInit(&g_can_dev_array[i].ll_init);
if (g_can_dev_array[i].ll_init.pstcFilter == RT_NULL)
{
g_can_dev_array[i].ll_init.pstcFilter = (stc_can_filter_config_t *)rt_malloc(sizeof(stc_can_filter_config_t) * FILTER_COUNT);
}
RT_ASSERT((g_can_dev_array[i].ll_init.pstcFilter != RT_NULL));
rt_memset(g_can_dev_array[i].ll_init.pstcFilter, 0, sizeof(stc_can_filter_config_t) * FILTER_COUNT);
g_can_dev_array[i].ll_init.pstcFilter[0].u32ID = 0U;
g_can_dev_array[i].ll_init.pstcFilter[0].u32IDMask = 0x1FFFFFFF;
g_can_dev_array[i].ll_init.pstcFilter[0].u32IDType = CAN_ID_STD_EXT;
g_can_dev_array[i].ll_init.u16FilterSelect = CAN_FILTER1;
g_can_dev_array[i].rt_can.config = rt_can_config;
/* register CAN device */
rt_hw_board_can_init(g_can_dev_array[i].instance);
rt_hw_can_register(&g_can_dev_array[i].rt_can,
g_can_dev_array[i].init.name,
&_can_ops,
&g_can_dev_array[i]);
}
return result;
}
INIT_DEVICE_EXPORT(rt_hw_can_init);
#endif /* BSP_USING_CAN */
/************************** end of file ******************/