4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-21 08:03:32 +08:00

375 lines
9.8 KiB
C
Raw Normal View History

2024-09-12 11:54:50 +08:00
/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024/9/12 zhujiale the first version
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
* 2024/10/24 Shell added non-blocking IPI calling method;
* fixup data racing
2024-09-12 11:54:50 +08:00
*/
#include "smp_call.h"
2024-08-29 10:12:47 +08:00
2024-08-29 16:21:19 +08:00
#define DBG_TAG "SMP"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
static struct smp_data
{
/* call request data to each cores */
struct rt_smp_call_req call_req_cores[RT_CPUS_NR];
/* call queue of this core */
rt_ll_slist_t call_queue;
} _smp_data_cores[RT_CPUS_NR];
#define _CALL_REQ_USAGE_FREED 0
#define _CALL_REQ_USAGE_BUSY 1
static void _call_req_take(struct rt_smp_call_req *req)
{
rt_base_t exp;
do
{
exp = _CALL_REQ_USAGE_FREED;
}
while (!rt_atomic_compare_exchange_strong(&req->event.typed.usage_tracer, &exp, _CALL_REQ_USAGE_BUSY));
}
static void _call_req_release(struct rt_smp_call_req *req)
{
rt_atomic_store(&req->event.typed.usage_tracer, _CALL_REQ_USAGE_FREED);
}
void rt_smp_request_wait_freed(struct rt_smp_call_req *req)
{
rt_base_t usage_tracer;
RT_DEBUG_IN_THREAD_CONTEXT;
usage_tracer = rt_atomic_load(&req->event.typed.usage_tracer);
while (usage_tracer != _CALL_REQ_USAGE_FREED)
{
rt_thread_yield();
usage_tracer = rt_atomic_load(&req->event.typed.usage_tracer);
}
}
static void _mask_out_cpu(struct rt_smp_event *event, int oncpu)
{
rt_base_t new_mask, old_mask;
rt_atomic_t *maskp = event->typed.calling_cpu_mask;
do
{
old_mask = rt_atomic_load(maskp);
new_mask = old_mask & ~(1ul << oncpu);
} while (!rt_atomic_compare_exchange_strong(maskp, &old_mask, new_mask));
}
static void _do_glob_request(struct rt_smp_call_req *req_global,
struct rt_smp_call_req *req_local)
{
struct rt_smp_event *event;
/* release the global request data */
rt_memcpy(req_local, req_global, sizeof(struct rt_smp_call_req));
rt_hw_spin_unlock(&req_global->freed_lock);
event = &req_local->event;
RT_ASSERT(!!event->func);
event->func(event->data);
return ;
}
static void _do_request(struct rt_smp_call_req *req)
{
struct rt_smp_event *event;
event = &req->event;
RT_ASSERT(!!event->func);
event->func(event->data);
_call_req_release(req);
return ;
}
2024-09-13 15:41:43 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
static rt_err_t _smp_call_handler(struct rt_smp_call_req *req, int oncpu)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
switch (req->event.event_id)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
case SMP_CALL_EVENT_GLOB_SYNC:
{
struct rt_smp_call_req req_local;
_do_glob_request(req, &req_local);
_mask_out_cpu(&req_local.event, oncpu);
break;
}
case SMP_CALL_EVENT_GLOB_ASYNC:
{
struct rt_smp_call_req req_local;
_do_glob_request(req, &req_local);
2024-08-29 10:12:47 +08:00
break;
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
}
case SMP_CALL_EVENT_REQUEST:
{
_do_request(req);
break;
}
2024-08-29 10:12:47 +08:00
default:
2024-09-12 11:54:50 +08:00
LOG_E("error event id\n");
2024-09-12 13:23:38 +08:00
return -RT_ERROR;
2024-08-29 10:12:47 +08:00
}
return RT_EOK;
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
2024-08-29 10:12:47 +08:00
void rt_smp_call_ipi_handler(int vector, void *param)
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
int oncpu = rt_hw_cpu_id();
struct rt_smp_call_req *request;
RT_ASSERT(rt_interrupt_get_nest());
2024-09-13 09:32:59 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
while (1)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
rt_ll_slist_t *node = rt_ll_slist_dequeue(&_smp_data_cores[oncpu].call_queue);
if (node)
{
request = rt_list_entry(node, struct rt_smp_call_req, slist_node);
_smp_call_handler(request, oncpu);
}
else
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
break;
2024-08-29 10:12:47 +08:00
}
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
}
static void _smp_call_remote_request(int callcpu, rt_smp_call_cb_t func,
void *data, rt_uint8_t flags,
struct rt_smp_call_req *call_req)
{
rt_base_t cpu_mask = 1ul << callcpu;
_call_req_take(call_req);
rt_ll_slist_enqueue(&_smp_data_cores[callcpu].call_queue, &call_req->slist_node);
rt_hw_ipi_send(RT_SMP_CALL_IPI, cpu_mask);
2024-08-29 10:12:47 +08:00
}
2024-09-12 11:54:50 +08:00
/**
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
* @brief SMP call request with user provided @call_req. Compare to
* rt_smp_call_func* family, you can call it in ISR or IRQ-masked
* environment.
2024-09-12 11:54:50 +08:00
*
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
* @param callcpu the logical core id of the target
* @param flags control flags of your request
* @param call_req the pre-initialized request data
* @return rt_err_t RT_EOK on succeed, otherwise the errno to failure
2024-09-12 11:54:50 +08:00
*/
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
rt_err_t rt_smp_call_request(int callcpu, rt_uint8_t flags, struct rt_smp_call_req *call_req)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
rt_ubase_t clvl;
int oncpu;
2024-08-29 10:12:47 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
if (rt_atomic_load(&call_req->event.typed.usage_tracer) ==
_CALL_REQ_USAGE_BUSY)
2024-09-12 11:54:50 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
return -RT_EBUSY;
2024-09-12 11:54:50 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
if (flags & SMP_CALL_WAIT_ALL)
2024-08-29 16:21:19 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
return -RT_EINVAL;
}
clvl = rt_enter_critical();
oncpu = rt_hw_cpu_id();
if (oncpu == callcpu && !(flags & SMP_CALL_NO_LOCAL))
{
rt_ubase_t level;
/* handle IPI on irq-masked environment */
level = rt_hw_local_irq_disable();
call_req->event.func(call_req->event.data);
rt_hw_local_irq_enable(level);
}
else if (callcpu < RT_CPUS_NR)
{
_smp_call_remote_request(callcpu, call_req->event.func, call_req->event.data, flags, call_req);
2024-08-29 16:21:19 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
rt_exit_critical_safe(clvl);
return RT_EOK;
}
void rt_smp_call_req_init(struct rt_smp_call_req *call_req,
rt_smp_call_cb_t func, void *data)
{
call_req->event.typed.usage_tracer = 0;
call_req->event.data = data;
call_req->event.func = func;
call_req->event.event_id = SMP_CALL_EVENT_REQUEST;
}
static void _smp_call_func_cond(int oncpu, rt_ubase_t cpu_mask,
rt_smp_call_cb_t func, void *data,
rt_uint8_t flags, rt_smp_cond_t cond)
{
rt_ubase_t tmp_mask;
rt_bool_t sync_call = RT_FALSE;
rt_ubase_t oncpu_mask = 1 << oncpu;
rt_atomic_t calling_cpu_mask, *maskp;
int tmp_id = 0, rcpu_cnt = 0, event_id, call_local;
if (!(flags & SMP_CALL_NO_LOCAL) && (oncpu_mask & cpu_mask))
{
call_local = RT_TRUE;
cpu_mask = cpu_mask & (~oncpu_mask);
}
else
{
call_local = RT_FALSE;
}
2024-08-29 10:12:47 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
if (cpu_mask)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
tmp_mask = cpu_mask;
if (flags & SMP_CALL_WAIT_ALL)
{
sync_call = RT_TRUE;
maskp = &calling_cpu_mask;
event_id = SMP_CALL_EVENT_GLOB_SYNC;
rt_atomic_store(maskp, cpu_mask);
}
else
{
event_id = SMP_CALL_EVENT_GLOB_ASYNC;
maskp = RT_NULL;
}
2024-09-12 18:25:10 +08:00
while (tmp_mask)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
struct rt_smp_call_req *call_req;
struct rt_smp_event *event;
int lz_bit = __rt_ffsl(tmp_mask);
tmp_id = lz_bit - 1;
tmp_mask &= ~(1ul << tmp_id);
if (cond && !cond(tmp_id, data))
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
cpu_mask &= ~(1ul << tmp_id);
continue;
2024-08-29 10:12:47 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
/* need to wait one more */
rcpu_cnt++;
call_req = &_smp_data_cores[oncpu].call_req_cores[tmp_id];
/* very careful here, spinning wait on previous occupation */
rt_hw_spin_lock(&call_req->freed_lock);
event = &call_req->event;
event->event_id = event_id;
event->func = func;
event->data = data;
event->typed.calling_cpu_mask = maskp;
rt_ll_slist_enqueue(&_smp_data_cores[tmp_id].call_queue, &call_req->slist_node);
2024-08-29 10:12:47 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
if (cpu_mask)
{
RT_ASSERT(rcpu_cnt);
rt_hw_ipi_send(RT_SMP_CALL_IPI, cpu_mask);
}
}
if (call_local && (!cond || cond(tmp_id, data)))
{
rt_ubase_t level;
/* callback on local with sims ISR */
level = rt_hw_local_irq_disable();
func(data);
rt_hw_local_irq_enable(level);
2024-08-29 10:12:47 +08:00
}
2024-09-12 11:54:50 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
if (sync_call && rcpu_cnt)
2024-09-12 11:54:50 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
while (rt_atomic_load(maskp) & cpu_mask)
;
2024-09-12 11:54:50 +08:00
}
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
/**
* @brief call function on specified CPU ,
*
* @param cpu_mask cpu mask for call
* @param func the function pointer
* @param data the data pointer
* @param flag call flag if you set SMP_CALL_WAIT_ALL
* then it will wait all cpu call finish and return
* else it will call function on specified CPU and return immediately
* @param cond the condition function pointer,if you set it then it will call function only when cond return true
*/
void rt_smp_call_func_cond(rt_ubase_t cpu_mask, rt_smp_call_cb_t func, void *data, rt_uint8_t flag, rt_smp_cond_t cond)
{
int oncpu;
rt_ubase_t clvl;
RT_ASSERT(!rt_hw_interrupt_is_disabled());
clvl = rt_enter_critical();
oncpu = rt_hw_cpu_id();
if (cpu_mask <= RT_ALL_CPU)
{
_smp_call_func_cond(oncpu, cpu_mask, func, data, flag, cond);
}
rt_exit_critical_safe(clvl);
}
void rt_smp_call_each_cpu(rt_smp_call_cb_t func, void *data, rt_uint8_t flag)
2024-09-12 11:54:50 +08:00
{
2024-09-12 18:25:10 +08:00
rt_smp_call_func_cond(RT_ALL_CPU, func, data, flag, RT_NULL);
2024-09-12 11:54:50 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
void rt_smp_call_each_cpu_cond(rt_smp_call_cb_t func, void *data, rt_uint8_t flag, rt_smp_cond_t cond_func)
2024-09-12 11:54:50 +08:00
{
2024-09-12 18:25:10 +08:00
rt_smp_call_func_cond(RT_ALL_CPU, func, data, flag, cond_func);
2024-09-12 11:54:50 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
void rt_smp_call_cpu_mask(rt_ubase_t cpu_mask, rt_smp_call_cb_t func, void *data, rt_uint8_t flag)
2024-09-12 11:54:50 +08:00
{
2024-09-12 18:25:10 +08:00
rt_smp_call_func_cond(cpu_mask, func, data, flag, RT_NULL);
2024-08-29 10:12:47 +08:00
}
2024-09-12 11:54:50 +08:00
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
void rt_smp_call_cpu_mask_cond(rt_ubase_t cpu_mask, rt_smp_call_cb_t func, void *data, rt_uint8_t flag, rt_smp_cond_t cond_func)
2024-09-12 11:54:50 +08:00
{
2024-09-12 18:25:10 +08:00
rt_smp_call_func_cond(cpu_mask, func, data, flag, cond_func);
2024-09-12 11:54:50 +08:00
}
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
void rt_smp_call_init(void)
2024-08-29 10:12:47 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
rt_memset(&_smp_data_cores, 0, sizeof(_smp_data_cores));
2024-09-12 18:25:10 +08:00
for (int i = 0; i < RT_CPUS_NR; i++)
2024-09-12 11:54:50 +08:00
{
feat: smp_call: added signaling call_req This patch introduces `rt_smp_call_request` API to handle queued requests across cores with user provided data buffer, which provides a way to request IPI through a non-blocking pattern. It also resolved several issues in the old implementation: - Multiple requests from different cores can not be queued in the work object of the target core. - Data racing on `rt_smp_work` of same core. If multiple requests came in turns, or if the call is used by the target cpu, while a new request is coming, the value will be overwrite. - Memory vulnerability. The rt_smp_event is allocated on stack, though the caller may not wait until the call is done. - API naming problem. Actually we don't provide a way to issue an IPI to ANY core in mask. What the API do is aligned to MANY pattern. - FUNC_IPI registering to PIC. Changes: - Declared and configured the new `RT_SMP_CALL_IPI` to support functional IPIs for task requests across cores. - Replaced the single `rt_smp_work` array with `call_req_cores` to manage per-core call requests safely. - Added `_call_req_take` and `_call_req_release` functions for atomic handling of request lifetimes, preventing data race conditions. - Replaced single event handling with a queue-based approach (`call_queue`) for efficient multi-request processing per core. - Introduced `rt_smp_call_ipi_handler` to process queued requests, reducing IPI contention by only sending new requests when needed. - Implemented `_smp_call_remote_request` to handle remote requests with specific flags, enabling more flexible core-to-core task signaling. - Refined `rt_smp_call_req_init` to initialize and track requests with atomic usage flags, mitigating potential memory vulnerabilities. Signed-off-by: Shell <smokewood@qq.com>
2024-10-31 11:57:04 +08:00
for (int j = 0; j < RT_CPUS_NR; j++)
{
rt_hw_spin_lock_init(&_smp_data_cores[i].call_req_cores[j].freed_lock);
}
2024-09-12 11:54:50 +08:00
}
2024-08-29 10:12:47 +08:00
}