4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 08:18:51 +08:00

370 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-14 wangqiang the first version
*/
#include <rtthread.h>
#ifdef PHY_USING_KSZ8081
#include <rtdevice.h>
#include "drv_gpio.h"
#include "drv_mdio.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the PHY registers. */
#define PHY_BASICCONTROL_REG 0x00U /*!< The PHY basic control register. */
#define PHY_BASICSTATUS_REG 0x01U /*!< The PHY basic status register. */
#define PHY_ID1_REG 0x02U /*!< The PHY ID one register. */
#define PHY_ID2_REG 0x03U /*!< The PHY ID two register. */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U /*!< The PHY auto-negotiate advertise register. */
#define PHY_CONTROL1_REG 0x1EU /*!< The PHY control one register. */
#define PHY_CONTROL2_REG 0x1FU /*!< The PHY control two register. */
#define PHY_CONTROL_ID1 0x22U /*!< The PHY ID1*/
/*! @brief Defines the mask flag in basic control register. */
#define PHY_BCTL_DUPLEX_MASK 0x0100U /*!< The PHY duplex bit mask. */
#define PHY_BCTL_RESTART_AUTONEG_MASK 0x0200U /*!< The PHY restart auto negotiation mask. */
#define PHY_BCTL_AUTONEG_MASK 0x1000U /*!< The PHY auto negotiation bit mask. */
#define PHY_BCTL_SPEED_MASK 0x2000U /*!< The PHY speed bit mask. */
#define PHY_BCTL_LOOP_MASK 0x4000U /*!< The PHY loop bit mask. */
#define PHY_BCTL_RESET_MASK 0x8000U /*!< The PHY reset bit mask. */
#define PHY_BCTL_SPEED_100M_MASK 0x2000U /*!< The PHY 100M speed mask. */
/*!@brief Defines the mask flag of operation mode in control two register*/
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /*!< The PHY remote loopback mask. */
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /*!< The PHY RMII reference clock select. */
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /*!< The PHY 10M half duplex mask. */
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /*!< The PHY 100M half duplex mask. */
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /*!< The PHY 10M full duplex mask. */
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /*!< The PHY 100M full duplex mask. */
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /*!< The PHY speed and duplex mask. */
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /*!< The PHY signal present on rx differential pair. */
#define PHY_CTL1_LINKUP_MASK 0x100U /*!< The PHY link up. */
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
/*! @brief Defines the mask flag in basic status register. */
#define PHY_BSTATUS_LINKSTATUS_MASK 0x0004U /*!< The PHY link status mask. */
#define PHY_BSTATUS_AUTONEGABLE_MASK 0x0008U /*!< The PHY auto-negotiation ability mask. */
#define PHY_BSTATUS_AUTONEGCOMP_MASK 0x0020U /*!< The PHY auto-negotiation complete mask. */
/*! @brief Defines the mask flag in PHY auto-negotiation advertise register. */
#define PHY_100BaseT4_ABILITY_MASK 0x200U /*!< The PHY have the T4 ability. */
#define PHY_100BASETX_FULLDUPLEX_MASK 0x100U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_100BASETX_HALFDUPLEX_MASK 0x080U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_10BASETX_FULLDUPLEX_MASK 0x040U /*!< The PHY has the 10M full duplex ability.*/
#define PHY_10BASETX_HALFDUPLEX_MASK 0x020U /*!< The PHY has the 10M full duplex ability.*/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/* defined the Reset pin, PORT and PIN config by menuconfig */
#define RESET_PIN GET_PIN(PHY_RESET_PORT, PHY_RESET_PIN)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Variables
******************************************************************************/
static struct rt_phy_device phy_ksz8081;
/*******************************************************************************
* Code
******************************************************************************/
static inline rt_bool_t read_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t *value)
{
if (4 != bus->ops->read(bus, addr, reg_id, value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static inline rt_bool_t write_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t value)
{
if (4 != bus->ops->write(bus, addr, reg_id, &value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static rt_phy_status rt_phy_init(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz)
{
rt_bool_t ret;
rt_phy_status result;
rt_uint32_t counter = PHY_TIMEOUT_COUNT;
rt_uint32_t id_reg = 0;
rt_uint32_t time_delay;
rt_uint32_t bss_reg;
rt_uint32_t ctl_reg = 0;
// reset phy device by gpio
rt_pin_mode(RESET_PIN, PIN_MODE_OUTPUT);
rt_pin_write(RESET_PIN, PIN_LOW);
rt_thread_mdelay(100);
rt_pin_write(RESET_PIN, PIN_HIGH);
rt_mdio_t *mdio_bus = rt_hw_mdio_register(object, "phy_mdio");
if (RT_NULL == mdio_bus)
{
return PHY_STATUS_FAIL;
}
phy_ksz8081.bus = mdio_bus;
phy_ksz8081.addr = phy_addr;
ret = mdio_bus->ops->init(mdio_bus, src_clock_hz);
if ( !ret )
{
return PHY_STATUS_FAIL;
}
/* Initialization after PHY stars to work. */
while ((id_reg != PHY_CONTROL_ID1) && (counter != 0))
{
phy_ksz8081.ops->read(PHY_ID1_REG, &id_reg);
counter--;
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (PHY_STATUS_OK == result)
{
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
rt_uint32_t data = 0;
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
result = phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
/* Set the negotiation. */
result = phy_ksz8081.ops->write(PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (PHY_STATUS_OK == result)
{
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (PHY_STATUS_OK == result)
{
/* Check auto negotiation complete. */
while (counter--)
{
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &bss_reg);
if (PHY_STATUS_OK == result)
{
phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (((bss_reg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctl_reg & PHY_LINK_READY_MASK))
{
/* Wait a moment for Phy status stable. */
for (time_delay = 0; time_delay < PHY_TIMEOUT_COUNT; time_delay++)
{
__ASM("nop");
}
break;
}
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
}
}
}
}
return PHY_STATUS_OK;
}
static rt_phy_status rt_phy_read(rt_uint32_t reg, rt_uint32_t *data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (read_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_write(rt_uint32_t reg, rt_uint32_t data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (write_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_loopback(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable)
{
rt_uint32_t data = 0;
rt_phy_status result;
/* Set the loop mode. */
if (enable)
{
if (PHY_LOCAL_LOOP == mode)
{
if (PHY_SPEED_100M == speed)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (PHY_LOCAL_LOOP == mode)
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_BASICCONTROL_REG, &data);
if (PHY_STATUS_OK == result)
{
data &= ~PHY_BCTL_LOOP_MASK;
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
static rt_phy_status get_link_status(rt_bool_t *status)
{
rt_phy_status result;
rt_uint32_t data;
/* Read the basic status register. */
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &data);
if (PHY_STATUS_OK == result)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = RT_FALSE;
}
else
{
/* link up. */
*status = RT_TRUE;
}
}
return result;
}
static rt_phy_status get_link_speed_duplex(rt_uint32_t *speed, rt_uint32_t *duplex)
{
rt_phy_status result = PHY_STATUS_OK;
rt_uint32_t data, ctl_reg;
/* Read the control two register. */
result = phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (PHY_STATUS_OK == result)
{
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = PHY_FULL_DUPLEX;
}
else
{
/* Half duplex. */
*duplex = PHY_HALF_DUPLEX;
}
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = PHY_SPEED_100M;
}
else
{ /* 10M speed. */
*speed = PHY_SPEED_10M;
}
}
return result;
}
static struct rt_phy_ops phy_ops =
{
.init = rt_phy_init,
.read = rt_phy_read,
.write = rt_phy_write,
.loopback = rt_phy_loopback,
.get_link_status = get_link_status,
.get_link_speed_duplex = get_link_speed_duplex,
};
static int rt_phy_ksz8081_register( void )
{
phy_ksz8081.ops = &phy_ops;
rt_hw_phy_register(&phy_ksz8081, "rtt-phy");
return 1;
}
INIT_DEVICE_EXPORT(rt_phy_ksz8081_register);
#endif /* PHY_USING_KSZ8081 */