4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 10:00:00 +08:00

473 lines
15 KiB
C
Raw Normal View History

2018-09-20 23:18:14 +08:00
/*
* Copyright (c) 2017, NXP
* All rights reserved.
*
*
2019-06-12 15:01:12 +08:00
* SPDX-License-Identifier: BSD-3-Clause
2018-09-20 23:18:14 +08:00
*/
#include "fsl_dcdc.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcdc_1"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DCDC module.
*
* @param base DCDC peripheral base address
*/
static uint32_t DCDC_GetInstance(DCDC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to DCDC bases for each instance. */
static DCDC_Type *const s_dcdcBases[] = DCDC_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to DCDC clocks for each instance. */
static const clock_ip_name_t s_dcdcClocks[] = DCDC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t DCDC_GetInstance(DCDC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dcdcBases); instance++)
{
if (s_dcdcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dcdcBases));
return instance;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Enable the access to DCDC registers.
*
* param base DCDC peripheral base address.
*/
2018-09-20 23:18:14 +08:00
void DCDC_Init(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
2019-06-12 15:01:12 +08:00
/*!
* brief Disable the access to DCDC registers.
*
* param base DCDC peripheral base address.
*/
2018-09-20 23:18:14 +08:00
void DCDC_Deinit(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
2019-06-12 15:01:12 +08:00
/*!
* brief Configure the DCDC clock source.
*
* param base DCDC peripheral base address.
* param clockSource Clock source for DCDC. See to "dcdc_clock_source_t".
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
{
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_XTAL_24M_OK_MASK | DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_SEL_CLK_MASK |
DCDC_REG0_PWD_OSC_INT_MASK);
switch (clockSource)
{
case kDCDC_ClockInternalOsc:
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK;
break;
case kDCDC_ClockExternalOsc:
/* Choose the external clock and disable the internal clock. */
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_SEL_CLK_MASK | DCDC_REG0_PWD_OSC_INT_MASK;
break;
case kDCDC_ClockAutoSwitch:
/* Set to switch from internal ring osc to xtal 24M if auto mode is enabled. */
tmp32 |= DCDC_REG0_XTAL_24M_OK_MASK;
break;
default:
break;
}
base->REG0 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Get the default setting for detection configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableXtalokDetection = false;
* config->powerDownOverVoltageDetection = true;
* config->powerDownLowVlotageDetection = false;
* config->powerDownOverCurrentDetection = true;
* config->powerDownPeakCurrentDetection = true;
* config->powerDownZeroCrossDetection = true;
* config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
* config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_detection_config_t"
*/
2018-09-20 23:18:14 +08:00
void DCDC_GetDefaultDetectionConfig(dcdc_detection_config_t *config)
{
assert(NULL != config);
2019-06-12 15:01:12 +08:00
/* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
2018-09-20 23:18:14 +08:00
config->enableXtalokDetection = false;
config->powerDownOverVoltageDetection = true;
config->powerDownLowVlotageDetection = false;
config->powerDownOverCurrentDetection = true;
config->powerDownPeakCurrentDetection = true;
config->powerDownZeroCrossDetection = true;
config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;
}
2019-06-12 15:01:12 +08:00
/*!
* breif Configure the DCDC detection.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_detection_config_t"
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetDetectionConfig(DCDC_Type *base, const dcdc_detection_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_XTALOK_DISABLE_MASK | DCDC_REG0_PWD_HIGH_VOLT_DET_MASK | DCDC_REG0_PWD_CMP_BATT_DET_MASK |
DCDC_REG0_PWD_OVERCUR_DET_MASK | DCDC_REG0_PWD_CUR_SNS_CMP_MASK | DCDC_REG0_PWD_ZCD_MASK |
DCDC_REG0_CUR_SNS_THRSH_MASK | DCDC_REG0_OVERCUR_TRIG_ADJ_MASK);
tmp32 |= DCDC_REG0_CUR_SNS_THRSH(config->PeakCurrentThreshold) |
DCDC_REG0_OVERCUR_TRIG_ADJ(config->OverCurrentThreshold);
if (false == config->enableXtalokDetection)
{
tmp32 |= DCDC_REG0_XTALOK_DISABLE_MASK;
}
if (config->powerDownOverVoltageDetection)
{
tmp32 |= DCDC_REG0_PWD_HIGH_VOLT_DET_MASK;
}
if (config->powerDownLowVlotageDetection)
{
tmp32 |= DCDC_REG0_PWD_CMP_BATT_DET_MASK;
}
if (config->powerDownOverCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_OVERCUR_DET_MASK;
}
if (config->powerDownPeakCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_CUR_SNS_CMP_MASK;
}
if (config->powerDownZeroCrossDetection)
{
tmp32 |= DCDC_REG0_PWD_ZCD_MASK;
}
base->REG0 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Get the default setting for low power configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableOverloadDetection = true;
* config->enableAdjustHystereticValue = false;
* config->countChargingTimePeriod = kDCDC_CountChargingTimePeriod8Cycle;
* config->countChargingTimeThreshold = kDCDC_CountChargingTimeThreshold32;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_low_power_config_t"
*/
2018-09-20 23:18:14 +08:00
void DCDC_GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
{
assert(NULL != config);
2019-06-12 15:01:12 +08:00
/* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
2018-09-20 23:18:14 +08:00
config->enableOverloadDetection = true;
config->enableAdjustHystereticValue = false;
config->countChargingTimePeriod = kDCDC_CountChargingTimePeriod8Cycle;
config->countChargingTimeThreshold = kDCDC_CountChargingTimeThreshold32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Configure the DCDC low power.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_low_power_config_t".
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK | DCDC_REG0_LP_HIGH_HYS_MASK | DCDC_REG0_LP_OVERLOAD_FREQ_SEL_MASK |
DCDC_REG0_LP_OVERLOAD_THRSH_MASK);
tmp32 |= DCDC_REG0_LP_OVERLOAD_FREQ_SEL(config->countChargingTimePeriod) |
DCDC_REG0_LP_OVERLOAD_THRSH(config->countChargingTimeThreshold);
if (config->enableOverloadDetection)
{
tmp32 |= DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK;
}
if (config->enableAdjustHystereticValue)
{
tmp32 |= DCDC_REG0_LP_HIGH_HYS_MASK;
}
base->REG0 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Get DCDC status flags.
*
* param base peripheral base address.
* return Mask of asserted status flags. See to "_dcdc_status_flags_t".
*/
2018-09-20 23:18:14 +08:00
uint32_t DCDC_GetstatusFlags(DCDC_Type *base)
{
uint32_t tmp32 = 0U;
if (DCDC_REG0_STS_DC_OK_MASK == (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
tmp32 |= kDCDC_LockedOKStatus;
}
return tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Reset current alert signal. Alert signal is generate by peak current detection.
*
* param base DCDC peripheral base address.
* param enable Switcher to reset signal. True means reset signal. False means don't reset signal.
*/
2018-09-20 23:18:14 +08:00
void DCDC_ResetCurrentAlertSignal(DCDC_Type *base, bool enable)
{
if (enable)
{
base->REG0 |= DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
else
{
base->REG0 &= ~DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
}
2019-06-12 15:01:12 +08:00
/*!
* brief Get the default setting for loop control configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableCommonHysteresis = false;
* config->enableCommonThresholdDetection = false;
* config->enableInvertHysteresisSign = false;
* config->enableRCThresholdDetection = false;
* config->enableRCScaleCircuit = 0U;
* config->complementFeedForwardStep = 0U;
* config->controlParameterMagnitude = 2U;
* config->integralProportionalRatio = 2U;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_loop_control_config_t"
*/
2018-09-20 23:18:14 +08:00
void DCDC_GetDefaultLoopControlConfig(dcdc_loop_control_config_t *config)
{
assert(NULL != config);
2019-06-12 15:01:12 +08:00
/* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
2018-09-20 23:18:14 +08:00
config->enableCommonHysteresis = false;
config->enableCommonThresholdDetection = false;
config->enableInvertHysteresisSign = false;
config->enableRCThresholdDetection = false;
config->enableRCScaleCircuit = 0U;
config->complementFeedForwardStep = 0U;
config->controlParameterMagnitude = 2U;
config->integralProportionalRatio = 2U;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Configure the DCDC loop control.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_loop_control_config_t".
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG1 register. */
tmp32 = base->REG1 & ~(DCDC_REG1_LOOPCTRL_EN_HYST_MASK | DCDC_REG1_LOOPCTRL_HST_THRESH_MASK);
if (config->enableCommonHysteresis)
{
tmp32 |= DCDC_REG1_LOOPCTRL_EN_HYST_MASK;
}
if (config->enableCommonThresholdDetection)
{
tmp32 |= DCDC_REG1_LOOPCTRL_HST_THRESH_MASK;
}
base->REG1 = tmp32;
/* configure the DCDC_REG2 register. */
tmp32 = base->REG2 &
~(DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK | DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK |
DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK | DCDC_REG2_LOOPCTRL_DC_FF_MASK | DCDC_REG2_LOOPCTRL_DC_R_MASK |
DCDC_REG2_LOOPCTRL_DC_C_MASK);
tmp32 |= DCDC_REG2_LOOPCTRL_DC_FF(config->complementFeedForwardStep) |
DCDC_REG2_LOOPCTRL_DC_R(config->controlParameterMagnitude) |
DCDC_REG2_LOOPCTRL_DC_C(config->integralProportionalRatio) |
DCDC_REG2_LOOPCTRL_EN_RCSCALE(config->enableRCScaleCircuit);
if (config->enableInvertHysteresisSign)
{
tmp32 |= DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK;
}
if (config->enableRCThresholdDetection)
{
tmp32 |= DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK;
}
base->REG2 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Configure for the min power.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_min_power_config_t".
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
tmp32 = base->REG3 & ~DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
if (config->enableUseHalfFreqForContinuous)
{
tmp32 |= DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
}
base->REG3 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Adjust the target voltage of VDD_SOC in run mode and low power mode.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDRun Target value in run mode. 25 mV each step from 0x00 to 0x1F. 00 is for 0.8V, 0x1F is for 1.575V.
* param VDDStandby Target value in low power mode. 25 mV each step from 0x00 to 0x4. 00 is for 0.9V, 0x4 is for 1.0V.
*/
2018-09-20 23:18:14 +08:00
void DCDC_AdjustTargetVoltage(DCDC_Type *base, uint32_t VDDRun, uint32_t VDDStandby)
{
uint32_t tmp32;
/* Unlock the step for the output. */
base->REG3 &= ~DCDC_REG3_DISABLE_STEP_MASK;
/* Configure the DCDC_REG3 register. */
tmp32 = base->REG3 & ~(DCDC_REG3_TARGET_LP_MASK | DCDC_REG3_TRG_MASK);
tmp32 |= DCDC_REG3_TARGET_LP(VDDStandby) | DCDC_REG3_TRG(VDDRun);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage settling to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
2019-06-12 15:01:12 +08:00
/*!
* brief Configure the DCDC internal regulator.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_internal_regulator_config_t".
*/
2018-09-20 23:18:14 +08:00
void DCDC_SetInternalRegulatorConfig(DCDC_Type *base, const dcdc_internal_regulator_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG1 register. */
tmp32 = base->REG1 & ~(DCDC_REG1_REG_FBK_SEL_MASK | DCDC_REG1_REG_RLOAD_SW_MASK);
tmp32 |= DCDC_REG1_REG_FBK_SEL(config->feedbackPoint);
if (config->enableLoadResistor)
{
tmp32 |= DCDC_REG1_REG_RLOAD_SW_MASK;
}
base->REG1 = tmp32;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Boot DCDC into DCM(discontinous conduction mode).
*
* pwd_zcd=0x0;
* pwd_cmp_offset=0x0;
* dcdc_loopctrl_en_rcscale=0x3 or 0x5;
* DCM_set_ctrl=1'b1;
*
* param base DCDC peripheral base address.
*/
2018-09-20 23:18:14 +08:00
void DCDC_BootIntoDCM(DCDC_Type *base)
{
base->REG0 &= ~(DCDC_REG0_PWD_ZCD_MASK | DCDC_REG0_PWD_CMP_OFFSET_MASK);
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x4U) |
DCDC_REG2_DCM_SET_CTRL_MASK;
}
2019-06-12 15:01:12 +08:00
/*!
* brief Boot DCDC into CCM(continous conduction mode).
*
* pwd_zcd=0x1;
* pwd_cmp_offset=0x0;
* dcdc_loopctrl_en_rcscale=0x3;
*
* param base DCDC peripheral base address.
*/
2018-09-20 23:18:14 +08:00
void DCDC_BootIntoCCM(DCDC_Type *base)
{
base->REG0 = (~DCDC_REG0_PWD_CMP_OFFSET_MASK & base->REG0) | DCDC_REG0_PWD_ZCD_MASK;
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x3U);
}