4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 18:07:22 +08:00

1598 lines
43 KiB
C
Raw Normal View History

2020-12-25 14:33:03 +08:00
/*
* Copyright (C) 2020, Huada Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-30 CDT first version
2021-10-05 17:34:41 +08:00
* 2021-10-05 lizhengyang fix set uart clk bug
2020-12-25 14:33:03 +08:00
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include <rtdevice.h>
#include <rthw.h>
#include "drv_usart.h"
#include "board_config.h"
#ifdef RT_USING_SERIAL
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
!defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_UART9) && \
!defined(BSP_USING_UART10)
#error "Please define at least one BSP_USING_UARTx"
/* UART instance can be selected at menuconfig -> Hardware Drivers Config -> On-chip Peripheral Drivers -> Enable UART */
#endif
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
/* HC32 config Rx timeout */
struct hc32_uart_rxto
{
M4_TMR0_TypeDef *TMR0_Instance;
rt_uint32_t channel;
rt_size_t timeout_bits;
struct hc32_irq_config irq_config;
};
/* HC32 config uart class */
struct hc32_uart_config
{
struct hc32_irq_config rxerr_irq_config;
struct hc32_irq_config rx_irq_config;
struct hc32_irq_config tx_irq_config;
#ifdef RT_SERIAL_USING_DMA
struct hc32_uart_rxto *rx_timeout;
struct dma_config *dma_rx;
struct dma_config *dma_tx;
#endif
};
/* HC32 UART index */
struct uart_index
{
rt_uint32_t index;
M4_USART_TypeDef *Instance;
};
/* HC32 UART irq handler */
struct uart_irq_handler
{
void (*rxerr_irq_handler)(void);
void (*rx_irq_handler)(void);
void (*tx_irq_handler)(void);
void (*tc_irq_handler)(void);
void (*rxto_irq_handler)(void);
void (*dma_rx_irq_handler)(void);
};
/* HC32 uart dirver class */
struct hc32_uart
{
struct rt_serial_device serial;
const char *name;
M4_USART_TypeDef *Instance;
struct hc32_uart_config config;
#ifdef RT_SERIAL_USING_DMA
rt_size_t dma_rx_last_index;
#endif
rt_uint16_t uart_dma_flag;
};
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
#ifndef UART_CONFIG
#define UART_CONFIG(uart_name, USART) \
{ \
.name = uart_name, \
.Instance = M4_##USART, \
.config = { \
.rxerr_irq_config = { \
.irq = USART##_RXERR_INT_IRQn, \
.irq_prio = USART##_RXERR_INT_PRIO, \
.int_src = INT_##USART##_EI, \
}, \
.rx_irq_config = { \
.irq = USART##_RX_INT_IRQn, \
.irq_prio = USART##_RX_INT_PRIO, \
.int_src = INT_##USART##_RI, \
}, \
.tx_irq_config = { \
.irq = USART##_TX_INT_IRQn, \
.irq_prio = USART##_TX_INT_PRIO, \
.int_src = INT_##USART##_TI, \
}, \
}, \
}
#endif /* UART_CONFIG */
#ifndef UART_RXTO_CONFIG
#define UART_RXTO_CONFIG(USART) \
{ \
.TMR0_Instance = USART##_RXTO_TMR0_UNIT, \
.channel = USART##_RXTO_TMR0_CH, \
.timeout_bits = 20UL, \
.irq_config = { \
.irq = USART##_RXTO_INT_IRQn, \
.irq_prio = USART##_RXTO_INT_PRIO, \
.int_src = INT_##USART##_RTO, \
} \
}
#endif /* UART_RXTO_CONFIG */
#ifndef UART_DMA_RX_CONFIG
#define UART_DMA_RX_CONFIG(USART) \
{ \
.Instance = USART##_RX_DMA_UNIT, \
.channel = USART##_RX_DMA_CH, \
.trigger_evt_src = EVT_##USART##_RI, \
.irq_config = { \
.irq = USART##_RX_DMA_INT_IRQn, \
.irq_prio = USART##_RX_DMA_INT_PRIO, \
.int_src = USART##_RX_DMA_INT_SRC, \
} \
}
#endif /* UART_DMA_RX_CONFIG */
#ifndef UART_DMA_TX_CONFIG
#define UART_DMA_TX_CONFIG(USART) \
{ \
.Instance = USART##_TX_DMA_UNIT, \
.channel = USART##_TX_DMA_CH, \
.trigger_evt_src = EVT_##USART##_TI, \
.irq_config = { \
.irq = USART##_TC_INT_IRQn, \
.irq_prio = USART##_TC_INT_PRIO, \
.int_src = INT_##USART##_TCI, \
} \
}
#endif /* UART_DMA_TX_CONFIG */
#define DMA_CH_REG(reg_base, ch) \
(*(uint32_t *)((uint32_t)(&(reg_base)) + ((ch) * 0x40UL)))
#define DMA_TRANS_CNT(unit, ch) \
(READ_REG32(DMA_CH_REG((unit)->MONDTCTL0, (ch))) >> DMA_DTCTL_CNT_POS)
#define USART_TCI_ENABLE(unit) \
SET_REG32_BIT(unit->CR1, USART_INT_TC)
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
#ifdef RT_SERIAL_USING_DMA
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
#endif
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
#ifdef BSP_USING_UART9
UART9_INDEX,
#endif
#ifdef BSP_USING_UART10
UART10_INDEX,
#endif
UART_INDEX_MAX,
};
static const struct uart_index uart_map[] =
{
#ifdef BSP_USING_UART1
{UART1_INDEX, M4_USART1},
#endif
#ifdef BSP_USING_UART2
{UART2_INDEX, M4_USART2},
#endif
#ifdef BSP_USING_UART3
{UART3_INDEX, M4_USART3},
#endif
#ifdef BSP_USING_UART4
{UART4_INDEX, M4_USART4},
#endif
#ifdef BSP_USING_UART5
{UART5_INDEX, M4_USART5},
#endif
#ifdef BSP_USING_UART6
{UART6_INDEX, M4_USART6},
#endif
#ifdef BSP_USING_UART7
{UART7_INDEX, M4_USART7},
#endif
#ifdef BSP_USING_UART8
{UART8_INDEX, M4_USART8},
#endif
#ifdef BSP_USING_UART9
{UART9_INDEX, M4_USART9},
#endif
#ifdef BSP_USING_UART10
{UART10_INDEX, M4_USART10},
#endif
};
static struct hc32_uart uart_obj[] =
{
#ifdef BSP_USING_UART1
UART_CONFIG("uart1", USART1),
#endif
#ifdef BSP_USING_UART2
UART_CONFIG("uart2", USART2),
#endif
#ifdef BSP_USING_UART3
UART_CONFIG("uart3", USART3),
#endif
#ifdef BSP_USING_UART4
UART_CONFIG("uart4", USART4),
#endif
#ifdef BSP_USING_UART5
UART_CONFIG("uart5", USART5),
#endif
#ifdef BSP_USING_UART6
UART_CONFIG("uart6", USART6),
#endif
#ifdef BSP_USING_UART7
UART_CONFIG("uart7", USART7),
#endif
#ifdef BSP_USING_UART8
UART_CONFIG("uart8", USART8),
#endif
#ifdef BSP_USING_UART9
UART_CONFIG("uart9", USART9),
#endif
#ifdef BSP_USING_UART10
UART_CONFIG("uart10", USART10),
#endif
};
2021-10-05 17:34:41 +08:00
static const struct uart_index uart_clock_map[] =
{
#ifdef BSP_USING_UART1
{0, M4_USART1},
#endif
#ifdef BSP_USING_UART2
{1, M4_USART2},
#endif
#ifdef BSP_USING_UART3
{2, M4_USART3},
#endif
#ifdef BSP_USING_UART4
{3, M4_USART4},
#endif
#ifdef BSP_USING_UART5
{4, M4_USART5},
#endif
#ifdef BSP_USING_UART6
{5, M4_USART6},
#endif
#ifdef BSP_USING_UART7
{6, M4_USART7},
#endif
#ifdef BSP_USING_UART8
{7, M4_USART8},
#endif
#ifdef BSP_USING_UART9
{8, M4_USART9},
#endif
#ifdef BSP_USING_UART10
{9, M4_USART10},
#endif
2021-10-05 17:34:41 +08:00
};
2020-12-25 14:33:03 +08:00
static const struct uart_irq_handler uart_irq_handlers[sizeof(uart_obj) / sizeof(uart_obj[0])];
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
static uint32_t hc32_get_uart_index(M4_USART_TypeDef *Instance)
{
uint32_t index = UART_INDEX_MAX;
for (uint8_t i = 0U; i < ARRAY_SZ(uart_map); i++)
{
if (uart_map[i].Instance == Instance)
{
index = uart_map[i].index;
RT_ASSERT(index < UART_INDEX_MAX)
break;
}
}
return index;
}
2021-10-05 17:34:41 +08:00
static uint32_t hc32_get_uart_clock_index(M4_USART_TypeDef *Instance)
{
uint32_t index = 10;
for (uint8_t i = 0U; i < ARRAY_SZ(uart_clock_map); i++)
{
if (uart_clock_map[i].Instance == Instance)
{
index = uart_clock_map[i].index;
RT_ASSERT(index < 10)
break;
}
}
return index;
}
2020-12-25 14:33:03 +08:00
static uint32_t hc32_get_usart_fcg(M4_USART_TypeDef *Instance)
{
2021-10-05 17:34:41 +08:00
return (PWC_FCG3_USART1 << hc32_get_uart_clock_index(Instance));
2020-12-25 14:33:03 +08:00
}
static rt_err_t hc32_configure(struct rt_serial_device *serial,
struct serial_configure *cfg)
{
struct hc32_uart *uart;
stc_usart_uart_init_t uart_init;
RT_ASSERT(RT_NULL != cfg);
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
/* Configure USART initialization structure */
USART_UartStructInit(&uart_init);
uart_init.u32OversamplingBits = USART_OVERSAMPLING_8BIT;
uart_init.u32Baudrate = cfg->baud_rate;
if ((M4_USART1 == uart->Instance) || \
(M4_USART2 == uart->Instance) || \
(M4_USART6 == uart->Instance) || \
(M4_USART7 == uart->Instance))
{
uart_init.u32ClkMode = USART_INTERNCLK_OUTPUT;
}
if(BIT_ORDER_LSB == cfg->bit_order)
{
uart_init.u32BitDirection = USART_LSB;
}
else
{
uart_init.u32BitDirection = USART_MSB;
}
switch(cfg->stop_bits)
{
case STOP_BITS_1:
uart_init.u32StopBit = USART_STOPBIT_1BIT;
break;
case STOP_BITS_2:
uart_init.u32StopBit = USART_STOPBIT_2BIT;
break;
default:
uart_init.u32StopBit = USART_STOPBIT_1BIT;
break;
}
switch(cfg->parity)
{
case PARITY_NONE:
uart_init.u32Parity = USART_PARITY_NONE;
break;
case PARITY_EVEN:
uart_init.u32Parity = USART_PARITY_EVEN;
break;
case PARITY_ODD:
uart_init.u32Parity = USART_PARITY_ODD;
break;
default:
uart_init.u32Parity = USART_PARITY_NONE;
break;
}
switch(cfg->data_bits)
{
case DATA_BITS_8:
uart_init.u32DataWidth = USART_DATA_LENGTH_8BIT;
break;
default:
return -RT_ERROR;
}
/* Enable USART clock */
PWC_Fcg3PeriphClockCmd(hc32_get_usart_fcg(uart->Instance), Enable);
rt_err_t rt_hw_board_uart_init(M4_USART_TypeDef *USARTx);
if (RT_EOK != rt_hw_board_uart_init(uart->Instance))
{
return -RT_ERROR;
}
USART_DeInit(uart->Instance);
if (Error == USART_UartInit(uart->Instance, &uart_init))
{
return -RT_ERROR;
}
/* Register RX error interrupt */
hc32_install_irq_handler(&uart->config.rxerr_irq_config,
uart_irq_handlers[hc32_get_uart_index(uart->Instance)].rxerr_irq_handler,
RT_TRUE);
USART_FuncCmd(uart->Instance, USART_INT_RX, Enable);
if ((serial->parent.flag & RT_DEVICE_FLAG_RDWR) || \
(serial->parent.flag & RT_DEVICE_FLAG_RDONLY))
{
USART_FuncCmd(uart->Instance, USART_RX, Enable);
}
if ((serial->parent.flag & RT_DEVICE_FLAG_RDWR) || \
(serial->parent.flag & RT_DEVICE_FLAG_WRONLY))
{
USART_FuncCmd(uart->Instance, USART_TX, Enable);
}
return RT_EOK;
}
static rt_err_t hc32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct hc32_uart *uart;
uint32_t uart_index;
#ifdef RT_SERIAL_USING_DMA
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
switch (cmd)
{
/* Disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
if(RT_DEVICE_FLAG_INT_RX == ctrl_arg)
{
/* Disable RX irq */
NVIC_DisableIRQ(uart->config.rx_irq_config.irq);
INTC_IrqSignOut(uart->config.rx_irq_config.irq);
}
else
{
/* Disable TX irq */
NVIC_DisableIRQ(uart->config.tx_irq_config.irq);
USART_FuncCmd(uart->Instance, USART_INT_TC, Disable);
INTC_IrqSignOut(uart->config.tx_irq_config.irq);
}
break;
/* Enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
uart_index = hc32_get_uart_index(uart->Instance);
if(RT_DEVICE_FLAG_INT_RX == ctrl_arg)
{
/* Install RX irq handler */
hc32_install_irq_handler(&uart->config.rx_irq_config,
uart_irq_handlers[uart_index].rx_irq_handler,
RT_TRUE);
}
else
{
/* Enable TX interrupt */
USART_FuncCmd(uart->Instance, USART_INT_TXE, Enable);
/* Install TX irq handler */
hc32_install_irq_handler(&uart->config.tx_irq_config,
uart_irq_handlers[uart_index].tx_irq_handler,
RT_TRUE);
}
break;
#ifdef RT_SERIAL_USING_DMA
case RT_DEVICE_CTRL_CONFIG:
hc32_dma_config(serial, ctrl_arg);
if (RT_DEVICE_FLAG_DMA_TX == ctrl_arg)
{
USART_FuncCmd(uart->Instance, (USART_TX | USART_INT_TC), Disable);
/* Install TC irq handler */
uart_index = hc32_get_uart_index(uart->Instance);
hc32_install_irq_handler(&uart->config.dma_tx->irq_config,
uart_irq_handlers[uart_index].tc_irq_handler,
RT_TRUE);
}
break;
#endif
case RT_DEVICE_CTRL_CLOSE:
USART_DeInit(uart->Instance);
break;
}
return RT_EOK;
}
static int hc32_putc(struct rt_serial_device *serial, char c)
{
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
if(serial->parent.open_flag & RT_DEVICE_FLAG_INT_TX)
{
if (USART_GetStatus(uart->Instance, USART_FLAG_TXE) != Set)
{
return -1;
}
}
else
{
/* Polling mode. */
while (USART_GetStatus(uart->Instance, USART_FLAG_TXE) != Set);
}
USART_SendData(uart->Instance, c);
return 1;
}
static int hc32_getc(struct rt_serial_device *serial)
{
int ch= -1;
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
if(Set == USART_GetStatus(uart->Instance, USART_FLAG_RXNE))
{
ch = (rt_uint8_t)USART_RecData(uart->Instance);
}
return ch;
}
static rt_size_t hc32_dma_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
int direction)
{
struct hc32_uart *uart;
M4_DMA_TypeDef *DMA_Instance;
uint8_t ch;
RT_ASSERT(RT_NULL != serial);
RT_ASSERT(RT_NULL != buf);
if (size == 0)
{
return 0;
}
uart = rt_container_of(serial, struct hc32_uart, serial);
if (RT_SERIAL_DMA_TX == direction)
{
DMA_Instance = uart->config.dma_tx->Instance;
ch = uart->config.dma_tx->channel;
if (Reset == USART_GetStatus(uart->Instance, USART_FLAG_TC))
{
RT_ASSERT(0);
}
DMA_SetSrcAddr(DMA_Instance, ch, (uint32_t)buf);
DMA_SetTransCnt(DMA_Instance, ch, size);
DMA_ChannelCmd(DMA_Instance, ch, Enable);
USART_FuncCmd(uart->Instance, USART_TX, Enable);
USART_TCI_ENABLE(uart->Instance);
return size;
}
return 0;
}
static void hc32_uart_rx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND);
}
static void hc32_uart_tx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
if (uart->serial.parent.open_flag & RT_DEVICE_FLAG_INT_TX)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DONE);
}
}
static void hc32_uart_rxerr_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
RT_ASSERT(RT_NULL != uart->Instance);
if (Set == USART_GetStatus(uart->Instance, (USART_FLAG_PE | USART_FLAG_FE)))
{
USART_RecData(uart->Instance);
}
USART_ClearStatus(uart->Instance, (USART_CLEAR_FLAG_PE | \
USART_CLEAR_FLAG_FE | \
USART_CLEAR_FLAG_ORE));
}
#ifdef RT_SERIAL_USING_DMA
static void hc32_uart_rx_timeout(struct rt_serial_device *serial)
{
struct hc32_uart *uart;
uint32_t cmp_val;
uint32_t timeout_bits;
M4_TMR0_TypeDef* TMR0_Instance;
uint8_t ch;
stc_tmr0_init_t stcTmr0Init;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
TMR0_Instance = uart->config.rx_timeout->TMR0_Instance;
ch = uart->config.rx_timeout->channel;
timeout_bits = uart->config.rx_timeout->timeout_bits;
if ((M4_USART1 == uart->Instance) || (M4_USART6 == uart->Instance))
{
RT_ASSERT(TMR0_CH_A == ch);
}
else if ((M4_USART2 == uart->Instance) || (M4_USART7 == uart->Instance))
{
RT_ASSERT(TMR0_CH_B == ch);
}
if ((M4_USART1 == uart->Instance) || (M4_USART2 == uart->Instance))
{
RT_ASSERT(M4_TMR0_1 == TMR0_Instance);
PWC_Fcg2PeriphClockCmd(PWC_FCG2_TMR0_1, Enable);
}
else if ((M4_USART6 == uart->Instance) || (M4_USART7 == uart->Instance))
{
RT_ASSERT(M4_TMR0_2 == TMR0_Instance);
PWC_Fcg2PeriphClockCmd(PWC_FCG2_TMR0_2, Enable);
}
/* De-initialize TMR0 */
TMR0_DeInit(TMR0_Instance);
/* Clear CNTAR register */
TMR0_SetCntVal(TMR0_Instance, ch, 0U);
/* TIMER0 basetimer function initialize */
TMR0_StructInit(&stcTmr0Init);
stcTmr0Init.u32ClockDivision = TMR0_CLK_DIV1;
stcTmr0Init.u32ClockSource = TMR0_CLK_SRC_XTAL32;
stcTmr0Init.u32HwTrigFunc = (TMR0_BT_HWTRG_FUNC_START | TMR0_BT_HWTRG_FUNC_CLEAR);
if (TMR0_CLK_DIV1 == stcTmr0Init.u32ClockDivision)
{
cmp_val = (timeout_bits - 4UL);
}
else if (TMR0_CLK_DIV2 == stcTmr0Init.u32ClockDivision)
{
cmp_val = (timeout_bits/2UL - 2UL);
}
else
{
cmp_val = (timeout_bits / (1UL << (stcTmr0Init.u32ClockDivision >> TMR0_BCONR_CKDIVA_POS)) - 1UL);
}
DDL_ASSERT(cmp_val <= 0xFFFFUL);
stcTmr0Init.u16CmpValue = (uint16_t)(cmp_val);
TMR0_Init(TMR0_Instance, ch, &stcTmr0Init);
/* Clear compare flag */
TMR0_ClearStatus(TMR0_Instance, ch);
/* Register RTO interrupt */
hc32_install_irq_handler(&uart->config.rx_timeout->irq_config,
uart_irq_handlers[hc32_get_uart_index(uart->Instance)].rxto_irq_handler,
RT_TRUE);
USART_ClearStatus(uart->Instance, USART_CLEAR_FLAG_RTOF);
USART_FuncCmd(uart->Instance, (USART_RTO | USART_INT_RTO), Enable);
}
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
{
struct hc32_uart *uart;
stc_dma_init_t dma_init;
M4_DMA_TypeDef *DMA_Instance;
uint32_t DMA_ch;
uint32_t u32Fcg0Periph = PWC_FCG0_AOS;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
RT_ASSERT(RT_NULL != uart->Instance);
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
stc_dma_llp_init_t llp_init;
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(RT_NULL != uart->config.rx_timeout->TMR0_Instance);
RT_ASSERT(RT_NULL != uart->config.dma_rx->Instance);
/* Initialization uart rx timeout for DMA */
hc32_uart_rx_timeout(serial);
uart->dma_rx_last_index = 0UL;
/* Get DMA unit&channel */
DMA_Instance = uart->config.dma_rx->Instance;
DMA_ch = uart->config.dma_rx->channel;
/* Enable DMA clock */
u32Fcg0Periph |= (M4_DMA1 == DMA_Instance) ? PWC_FCG0_DMA1:PWC_FCG0_DMA2;
PWC_Fcg0PeriphClockCmd(u32Fcg0Periph, Enable);
/* Disable DMA */
DMA_ChannelCmd(DMA_Instance, DMA_ch, Disable);
/* Initialize DMA */
DMA_StructInit(&dma_init);
dma_init.u32IntEn = DMA_INT_ENABLE;
dma_init.u32SrcAddr = ((uint32_t)(&uart->Instance->DR) + 2UL);
dma_init.u32DestAddr = (uint32_t)rx_fifo->buffer;
dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT;
dma_init.u32BlockSize = 1UL;
dma_init.u32TransCnt = serial->config.bufsz;
dma_init.u32SrcInc = DMA_SRC_ADDR_FIX;
dma_init.u32DestInc = DMA_DEST_ADDR_INC;
DMA_Init(DMA_Instance, DMA_ch, &dma_init);
/* Initialize LLP */
static stc_dma_llp_descriptor_t llp_desc;
llp_init.u32LlpEn = DMA_LLP_ENABLE;
llp_init.u32LlpRun = DMA_LLP_WAIT;
llp_init.u32LlpAddr= (uint32_t)&llp_desc;
DMA_LlpInit(DMA_Instance, DMA_ch, &llp_init);
/* Configure LLP descriptor */
llp_desc.SARx = dma_init.u32SrcAddr;
llp_desc.DARx = dma_init.u32DestAddr;
llp_desc.DTCTLx= (dma_init.u32TransCnt << DMA_DTCTL_CNT_POS) | (dma_init.u32BlockSize << DMA_DTCTL_BLKSIZE_POS);
llp_desc.LLPx = (uint32_t)&llp_desc;
llp_desc.CHCTLx= (dma_init.u32SrcInc | dma_init.u32DestInc | dma_init.u32DataWidth | \
llp_init.u32LlpEn | llp_init.u32LlpRun | dma_init.u32IntEn);
/* Register DMA interrupt */
hc32_install_irq_handler(&uart->config.dma_rx->irq_config,
uart_irq_handlers[hc32_get_uart_index(uart->Instance)].dma_rx_irq_handler,
RT_TRUE);
/* Enable DMA module */
DMA_Cmd(DMA_Instance, Enable);
DMA_TransIntCmd(DMA_Instance, (DMA_TC_INT_CH0 << DMA_ch), Enable);
DMA_SetTriggerSrc(DMA_Instance, DMA_ch, uart->config.dma_rx->trigger_evt_src);
DMA_ChannelCmd(DMA_Instance, DMA_ch, Enable);
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
RT_ASSERT(RT_NULL != uart->config.dma_tx->Instance);
DMA_Instance = uart->config.dma_tx->Instance;
DMA_ch = uart->config.dma_tx->channel;
/* Enable DMA clock */
u32Fcg0Periph |= (M4_DMA1 == DMA_Instance) ? PWC_FCG0_DMA1:PWC_FCG0_DMA2;
PWC_Fcg0PeriphClockCmd(u32Fcg0Periph, Enable);
/* Disable DMA */
DMA_ChannelCmd(DMA_Instance, DMA_ch, Disable);
/* Initialize DMA */
DMA_StructInit(&dma_init);
dma_init.u32IntEn = DMA_INT_DISABLE;
dma_init.u32SrcAddr = 0UL;
dma_init.u32DestAddr = (uint32_t)(&uart->Instance->DR);
dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT;
dma_init.u32BlockSize = 1UL;
dma_init.u32TransCnt = 0UL;
dma_init.u32SrcInc = DMA_SRC_ADDR_INC;
dma_init.u32DestInc = DMA_DEST_ADDR_FIX;
DMA_Init(DMA_Instance, DMA_ch, &dma_init);
/* Enable DMA module */
DMA_Cmd(DMA_Instance, Enable);
DMA_SetTriggerSrc(DMA_Instance, DMA_ch, uart->config.dma_tx->trigger_evt_src);
}
}
static void hc32_uart_tc_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(uart != RT_NULL);
USART_FuncCmd(uart->Instance, (USART_TX|USART_INT_TC), Disable);
if (uart->serial.parent.open_flag & RT_DEVICE_FLAG_DMA_TX)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
}
static void hc32_uart_dma_rx_irq_handler(struct hc32_uart *uart)
{
struct rt_serial_device *serial;
rt_size_t recv_len;
rt_base_t level;
RT_ASSERT(RT_NULL != uart);
RT_ASSERT(RT_NULL != uart->Instance);
serial = &uart->serial;
level = rt_hw_interrupt_disable();
recv_len = serial->config.bufsz - uart->dma_rx_last_index;
uart->dma_rx_last_index = 0UL;
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
static void hc32_uart_rxto_irq_handler(struct hc32_uart *uart)
{
rt_base_t level;
rt_size_t cnt;
rt_size_t recv_len;
rt_size_t recv_total_index;
cnt = DMA_TRANS_CNT(uart->config.dma_rx->Instance , uart->config.dma_rx->channel);
recv_total_index = uart->serial.config.bufsz - cnt;
if (0UL != recv_total_index)
{
level = rt_hw_interrupt_disable();
recv_len = recv_total_index - uart->dma_rx_last_index;
uart->dma_rx_last_index = recv_total_index;
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
TMR0_Cmd(uart->config.rx_timeout->TMR0_Instance, uart->config.rx_timeout->channel, Disable);
USART_ClearStatus(uart->Instance, USART_CLEAR_FLAG_RTOF);
}
#endif
#if defined(BSP_USING_UART1)
static void hc32_uart1_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA)
static void hc32_uart1_tc_irq_handler(void)
{
#if defined(BSP_UART1_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart1_rxto_irq_handler(void)
{
#if defined(BSP_UART1_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart1_dma_rx_irq_handler(void)
{
#if defined(BSP_UART1_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
#endif /* RT_SERIAL_USING_DMA */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
static void hc32_uart2_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart2_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart2_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA)
static void hc32_uart2_tc_irq_handler(void)
{
#if defined(BSP_UART2_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart2_rxto_irq_handler(void)
{
#if defined(BSP_UART2_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart2_dma_rx_irq_handler(void)
{
#if defined(BSP_UART2_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
#endif /* RT_SERIAL_USING_DMA */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
static void hc32_uart3_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart3_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart3_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
static void hc32_uart4_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart4_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart4_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART4 */
#if defined(BSP_USING_UART5)
static void hc32_uart5_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart5_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart5_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART5 */
#if defined(BSP_USING_UART6)
static void hc32_uart6_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart6_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart6_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA)
static void hc32_uart6_tc_irq_handler(void)
{
#if defined(BSP_UART6_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart6_rxto_irq_handler(void)
{
#if defined(BSP_UART6_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart6_dma_rx_irq_handler(void)
{
#if defined(BSP_UART6_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
#endif /* RT_SERIAL_USING_DMA */
#endif /* BSP_USING_UART6 */
#if defined(BSP_USING_UART7)
static void hc32_uart7_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart7_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA)
static void hc32_uart7_tc_irq_handler(void)
{
#if defined(BSP_UART7_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tc_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart7_rxto_irq_handler(void)
{
#if defined(BSP_UART7_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxto_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
static void hc32_uart7_dma_rx_irq_handler(void)
{
#if defined(BSP_UART7_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_dma_rx_irq_handler(&uart_obj[UART7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
#endif
}
#endif /* RT_SERIAL_USING_DMA */
#endif /* BSP_USING_UART7 */
#if defined(BSP_USING_UART8)
static void hc32_uart8_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart8_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart8_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART8 */
#if defined(BSP_USING_UART9)
static void hc32_uart9_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart9_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart9_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART9 */
#if defined(BSP_USING_UART10)
static void hc32_uart10_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rx_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart10_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart10_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART10 */
static const struct uart_irq_handler uart_irq_handlers[] =
{
#ifdef BSP_USING_UART1
{hc32_uart1_rxerr_irq_handler, hc32_uart1_rx_irq_handler, hc32_uart1_tx_irq_handler,
hc32_uart1_tc_irq_handler, hc32_uart1_rxto_irq_handler, hc32_uart1_dma_rx_irq_handler},
#endif
#ifdef BSP_USING_UART2
{hc32_uart2_rxerr_irq_handler, hc32_uart2_rx_irq_handler, hc32_uart2_tx_irq_handler,
hc32_uart2_tc_irq_handler, hc32_uart2_rxto_irq_handler, hc32_uart2_dma_rx_irq_handler},
#endif
#ifdef BSP_USING_UART3
{hc32_uart3_rxerr_irq_handler, hc32_uart3_rx_irq_handler, hc32_uart3_tx_irq_handler},
#endif
#ifdef BSP_USING_UART4
{hc32_uart4_rxerr_irq_handler, hc32_uart4_rx_irq_handler, hc32_uart4_tx_irq_handler},
#endif
#ifdef BSP_USING_UART5
{hc32_uart5_rxerr_irq_handler, hc32_uart5_rx_irq_handler, hc32_uart5_tx_irq_handler},
#endif
#ifdef BSP_USING_UART6
{hc32_uart6_rxerr_irq_handler, hc32_uart6_rx_irq_handler, hc32_uart6_tx_irq_handler,
hc32_uart6_tc_irq_handler, hc32_uart6_rxto_irq_handler, hc32_uart6_dma_rx_irq_handler},
#endif
#ifdef BSP_USING_UART7
{hc32_uart7_rxerr_irq_handler, hc32_uart7_rx_irq_handler, hc32_uart7_tx_irq_handler,
hc32_uart7_tc_irq_handler, hc32_uart7_rxto_irq_handler, hc32_uart7_dma_rx_irq_handler},
#endif
#ifdef BSP_USING_UART8
{hc32_uart8_rxerr_irq_handler, hc32_uart8_rx_irq_handler, hc32_uart8_tx_irq_handler},
#endif
#ifdef BSP_USING_UART9
{hc32_uart9_rxerr_irq_handler, hc32_uart9_rx_irq_handler, hc32_uart9_tx_irq_handler},
#endif
#ifdef BSP_USING_UART10
{hc32_uart10_rxerr_irq_handler, hc32_uart10_rx_irq_handler, hc32_uart10_tx_irq_handler},
#endif
};
static void hc32_uart_get_dma_config(void)
{
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].uart_dma_flag = 0;
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct hc32_uart_rxto uart1_rx_timeout = UART_RXTO_CONFIG(USART1);
uart_obj[UART1_INDEX].config.rx_timeout = &uart1_rx_timeout;
static struct dma_config uart1_dma_rx = UART_DMA_RX_CONFIG(USART1);
uart_obj[UART1_INDEX].config.dma_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART1_TX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart1_dma_tx = UART_DMA_TX_CONFIG(USART1);
uart_obj[UART1_INDEX].config.dma_tx = &uart1_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART2
uart_obj[UART2_INDEX].uart_dma_flag = 0;
#ifdef BSP_UART2_RX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct hc32_uart_rxto uart2_rx_timeout = UART_RXTO_CONFIG(USART2);
uart_obj[UART2_INDEX].config.rx_timeout = &uart2_rx_timeout;
static struct dma_config uart2_dma_rx = UART_DMA_RX_CONFIG(USART2);
uart_obj[UART2_INDEX].config.dma_rx = &uart2_dma_rx;
#endif
#ifdef BSP_UART2_TX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart2_dma_tx = UART_DMA_TX_CONFIG(USART2);
uart_obj[UART2_INDEX].config.dma_tx = &uart2_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART6
uart_obj[UART6_INDEX].uart_dma_flag = 0;
#ifdef BSP_UART6_RX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct hc32_uart_rxto uart6_rx_timeout = UART_RXTO_CONFIG(USART6);
uart_obj[UART6_INDEX].config.rx_timeout = &uart6_rx_timeout;
static struct dma_config uart6_dma_rx = UART_DMA_RX_CONFIG(USART6);
uart_obj[UART6_INDEX].config.dma_rx = &uart6_dma_rx;
#endif
#ifdef BSP_UART6_TX_USING_DMA
uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart6_dma_tx = UART_DMA_TX_CONFIG(USART6);
uart_obj[UART6_INDEX].config.dma_tx = &uart6_dma_tx;
#endif
#endif
#ifdef BSP_USING_UART7
uart_obj[UART7_INDEX].uart_dma_flag = 0;
#ifdef BSP_UART7_RX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct hc32_uart_rxto uart7_rx_timeout = UART_RXTO_CONFIG(USART7);
uart_obj[UART7_INDEX].config.rx_timeout = &uart7_rx_timeout;
static struct dma_config uart7_dma_rx = UART_DMA_RX_CONFIG(USART7);
uart_obj[UART7_INDEX].config.dma_rx = &uart7_dma_rx;
#endif
#ifdef BSP_UART7_TX_USING_DMA
uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart7_dma_tx = UART_DMA_TX_CONFIG(USART7);
uart_obj[UART7_INDEX].config.dma_tx = &uart7_dma_tx;
#endif
#endif
}
static const struct rt_uart_ops hc32_uart_ops =
{
.configure = hc32_configure,
.control = hc32_control,
.putc = hc32_putc,
.getc = hc32_getc,
.dma_transmit = hc32_dma_transmit
};
int hc32_hw_uart_init(void)
{
rt_err_t result = RT_EOK;
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct hc32_uart);
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
hc32_uart_get_dma_config();
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].serial.ops = &hc32_uart_ops;
uart_obj[i].serial.config = config;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].name,
(RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX |
RT_DEVICE_FLAG_INT_TX |
uart_obj[i].uart_dma_flag),
&uart_obj[i]);
RT_ASSERT(result == RT_EOK);
}
return result;
}
INIT_BOARD_EXPORT(hc32_hw_uart_init);
#endif /* RT_USING_SERIAL */
/*******************************************************************************
* EOF (not truncated)
******************************************************************************/