4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 08:37:22 +08:00

1257 lines
32 KiB
C
Raw Normal View History

2018-06-05 14:36:29 +08:00
/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file ck_rsa.c
* @brief CSI Source File for RSA Driver
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include "drv_rsa.h"
#include "ck_rsa.h"
#define ERR_RSA(errno) (CSI_DRV_ERRNO_RSA_BASE | errno)
#define RSA_NULL_PARAM_CHK(para) \
do { \
if (para == NULL) { \
return ERR_RSA(EDRV_PARAMETER); \
} \
} while (0)
typedef struct {
uint32_t base;
uint32_t irq;
rsa_event_cb_t cb;
rsa_data_bits_e data_bit;
rsa_endian_mode_e endian;
rsa_padding_t padding;
rsa_status_t status;
} ck_rsa_priv_t;
static ck_rsa_priv_t rsa_handle[CONFIG_RSA_NUM];
extern uint8_t modulus[];
static ck_rsa_reg_t *rsa_reg = NULL;
static uint32_t g_acc[RSA_KEY_WORD];
/* Driver Capabilities */
static const rsa_capabilities_t driver_capabilities = {
.bits_192 = 1, /* 192bits modular mode */
.bits_256 = 1, /* 256bits modular mode */
.bits_512 = 1, /* 512bits modular mode */
.bits_1024 = 1, /* 1024bits modular mode */
.bits_2048 = 1 /* 2048bits modular mode */
};
//
// Functions
//
static uint32_t sw_exptmod_2_2m(const uint32_t *modulus, uint32_t words, uint32_t *tmp_c);
static uint32_t get_valid_bits(const uint32_t *addr, uint32_t wordsize);
static uint32_t g_acc[RSA_KEY_WORD];
static inline void rsa_clear_int(void)
{
rsa_reg->rsa_isr = 0xffff;
rsa_reg->rsa_imr = 0x0000;
}
static inline void rsa_setm_width(uint32_t width)
{
rsa_reg->rsa_mwid = width;
}
static inline void rsa_setd_width(uint32_t width)
{
rsa_reg->rsa_ckid = width;
}
static inline void rsa_setb_width(uint32_t width)
{
rsa_reg->rsa_bwid = width;
}
static inline void rsa_cal_q(void)
{
rsa_reg->rsa_ctrl = RAS_CALCULATE_Q;
}
static inline void rsa_opr_start(void)
{
rsa_reg->rsa_ctrl = RSA_ENABLE_MODULE;
}
static inline void rsa_opr_reset(void)
{
rsa_reg->rsa_ctrl = RSA_ENDIAN_MODE;
rsa_reg->rsa_rst |= RSA_RESET;
while (rsa_reg->rsa_rst);
}
static inline uint32_t rsa_loop_cnt(void)
{
return rsa_reg->rsa_lp_cnt;
}
static inline uint32_t rsa_cal_q_done(void)
{
return (rsa_reg->rsa_isr >> RSA_CAL_Q_DONE_OFFSET) & 0x1;
}
static inline uint32_t rsa_opr_done(void)
{
return (rsa_reg->rsa_isr) & 0x1;
}
static inline uint32_t rsa_raise_exception(void)
{
return (rsa_reg->rsa_isr) & 0x1E;
}
static inline uint32_t rsa_loadm(uint32_t *data, uint32_t length)
{
uint32_t i;
uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfm;
for (i = 0; i < length; i++) {
*(volatile uint32_t *)baseaddr = data[i];
baseaddr = baseaddr + 4;
}
return 0;
}
static void rsa_loadd(uint32_t *data, uint32_t length)
{
uint32_t i;
uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfd;
for (i = 0; i < length; i++) {
*(volatile uint32_t *)baseaddr = data[i];
baseaddr = baseaddr + 4;
}
}
static void rsa_loadc(uint32_t *data, uint32_t length)
{
uint32_t i;
uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfc;
for (i = 1; i < length + 1; i++) {
*(volatile uint32_t *)baseaddr = data[i - 1];
baseaddr = baseaddr + 4;
}
}
static void rsa_loadb(uint32_t *data, uint32_t length)
{
uint32_t i;
uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfb;
for (i = 0; i < length; i++) {
*(volatile uint32_t *)baseaddr = data[i];
baseaddr = baseaddr + 4;
}
}
static void rsa_read_r(uint32_t data[], uint32_t length)
{
uint32_t i;
uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfr;
for (i = 0; i < length; i++) {
data[i] = *(uint32_t *)baseaddr;
baseaddr = baseaddr + 4;
}
}
static uint32_t rsa_exptmod_1024(const uint32_t *modulus, const uint32_t *exponent,
const uint32_t *base, uint32_t *out)
{
#ifndef RSA_USING_MALLOC
#ifndef RSA_USING_ID2KEY
uint32_t tmp_c[RSA_KEY_WORD];
#endif
uint32_t ret = 0;
if ((NULL == exponent) || (NULL == base) || (NULL == out)) {
return 1;
}
#ifndef RSA_USING_ID2KEY
ret = sw_exptmod_2_2m(modulus, RSA_KEY_WORD, tmp_c);
if (ret != 0) {
return ret;
}
#endif
/* reset for safe */
rsa_opr_reset();
/* clear and disable int */
rsa_clear_int();
/* set m */
rsa_setm_width(RSA_KEY_WORD >> 1);
rsa_loadm((uint32_t *)modulus, RSA_KEY_WORD);
/* set d */
rsa_setd_width(get_valid_bits(exponent, RSA_KEY_WORD) - 1);
rsa_loadd((uint32_t *)exponent, RSA_KEY_WORD);
/* set b */
rsa_setb_width(RSA_KEY_WORD >> 1);
rsa_loadb((uint32_t *)base, RSA_KEY_WORD);
/* set c */
#ifndef RSA_USING_ID2KEY
rsa_loadc(tmp_c, RSA_KEY_WORD);
#else
rsa_loadc(g_acc, RSA_KEY_WORD);
#endif
rsa_cal_q();
while (!rsa_cal_q_done() && (!rsa_raise_exception()));
if (!rsa_raise_exception()) {
rsa_opr_start();
while ((!rsa_opr_done()) && (rsa_loop_cnt() < MAX_RSA_LP_CNT) && (!rsa_raise_exception()));
if ((rsa_loop_cnt() >= MAX_RSA_LP_CNT)
|| rsa_raise_exception()) {
ret = 1;
} else {
rsa_read_r(out, RSA_KEY_WORD);
}
} else {
ret = 1;
}
rsa_opr_reset();
return ret;
#else
uint32_t ret;
uint32_t *tmp_c = (uint32_t *)tee_malloc(RSA_KEY_BYTE);
if (tmp_c == NULL) {
return -1;
}
if ((NULL == modulus) || (NULL == exponent) || (NULL == base) || (NULL == out)) {
return -1;
}
#if 0
ret = sw_exptmod_2_2m(modulus, RSA_KEY_WORD, tmp_c);
if (ret != 0) {
tee_free(tmp_c);
return ret;
}
#else
memcpy(tmp_c, g_acc, RSA_KEY_BYTE);
#endif
/* reset for safe */
rsa_opr_reset();
/* clear and disable int */
rsa_clear_int();
/* set m */
rsa_setm_width(RSA_KEY_WORD >> 1);
rsa_loadm((uint32_t *)modulus, RSA_KEY_WORD);
/* set d */
rsa_setd_width(get_valid_bits(exponent, RSA_KEY_WORD) - 1);
rsa_loadd((uint32_t *)exponent, RSA_KEY_WORD);
/* set b */
rsa_setb_width(RSA_KEY_WORD >> 1);
rsa_loadb((uint32_t *)base, RSA_KEY_WORD);
/* set c */
rsa_loadc(tmp_c, RSA_KEY_WORD);
rsa_cal_q();
while (!rsa_cal_q_done() && (!rsa_raise_exception()));
if (!rsa_raise_exception()) {
rsa_opr_start();
while ((!rsa_opr_done()) && (rsa_loop_cnt() < MAX_RSA_LP_CNT) && (!rsa_raise_exception()));
if ((rsa_loop_cnt() >= MAX_RSA_LP_CNT)
|| rsa_raise_exception()) {
ret = 1;
} else {
rsa_read_r(out, RSA_KEY_WORD);
}
} else {
ret = 1;
}
rsa_opr_reset();
tee_free(tmp_c);
return ret;
#endif
}
static uint32_t get_valid_bits(const uint32_t *addr, uint32_t wordsize)
{
uint32_t i = 0;
uint32_t j = 0;
for (i = wordsize; i > 0; i--) {
if (addr[i - 1]) {
break;
}
}
for (j = RSA_KEY_WORD; j > 0; j--) {
if (addr[i - 1] & (0x1 << (j - 1))) {
break;
}
}
return ((i - 1) << 5) + j;
}
static uint32_t get_first_nonzero_words(uint32_t *a, uint32_t max_words)
{
uint32_t i = 0;
for (i = max_words; i > 0; i--) {
if (a[i - 1]) {
return i;
}
}
return 0;
}
static uint32_t word_array_left_shift(uint32_t *a, uint32_t words,
uint32_t shift_bits, uint32_t *r)
{
uint32_t i = 0;
uint32_t w = shift_bits >> 5;
uint32_t b = shift_bits - (w << 5);
for (i = 0; i < w; i++) {
r[i] = 0;
}
uint32_t tmp = 0;
for (i = 0; i < words; i++) {
r[w + i] = (tmp | ((a[i] << b) & (~((0x1 << b) - 1))));
tmp = ((a[i] >> (RSA_KEY_WORD - b)) & ((0x1 << b) - 1));
}
r[w + i] = tmp;
return 0;
}
/* r = a - b */
static uint32_t _word_array_sub(uint32_t *a, uint32_t a_words,
uint32_t *b, uint32_t b_words,
uint32_t *r)
{
uint32_t i;
uint64_t tmp = 0;
uint32_t borrow = 0;
for (i = 0; i < b_words; i++) {
tmp = UINT32_TO_UINT64(a[i]) - UINT32_TO_UINT64(b[i]) - UINT32_TO_UINT64(borrow);
r[i] = UINT64L_TO_UINT32(tmp);
borrow = ((UINT64H_TO_UINT32(tmp) == 0) ? (0) : (0xffffffff - UINT64H_TO_UINT32(tmp) + 1));
}
for (i = b_words; i < a_words; i++) {
tmp = UINT32_TO_UINT64(a[i]) - UINT32_TO_UINT64(borrow);
r[i] = UINT64L_TO_UINT32(tmp);
borrow = ((UINT64H_TO_UINT32(tmp) == 0) ? (0) : (0xffffffff - UINT64H_TO_UINT32(tmp) + 1));
}
if (borrow) {
return -1;
}
return 0;
}
static uint32_t word_array_mod(uint32_t *a, uint32_t a_words,
uint32_t *b, uint32_t b_words,
uint32_t *r)
{
#ifndef RSA_USING_MALLOC
uint32_t ret;
bignum_t tmpa;
bignum_t tmpb;
memset(&tmpa, 0, sizeof(tmpa));
memset(&tmpb, 0, sizeof(tmpa));
uint32_t b_valid_bits = get_valid_bits(b, b_words);
memcpy(tmpa.pdata, a, (a_words << 2));
do {
uint32_t tmpa_words = get_first_nonzero_words(tmpa.pdata, a_words);
uint32_t tmpa_valid_bits = get_valid_bits(tmpa.pdata, tmpa_words);
if (tmpa_valid_bits > b_valid_bits + 1) {
memset(tmpb.pdata, 0, (a_words << 2));
word_array_left_shift(b, b_words, tmpa_valid_bits - b_valid_bits - 1,
tmpb.pdata);
uint32_t tmpb_words = get_first_nonzero_words(tmpb.pdata, a_words);
ret = _word_array_sub(tmpa.pdata, tmpa_words, tmpb.pdata, tmpb_words, tmpa.pdata);
} else if (tmpa_words == b_words) {
memcpy(r, tmpa.pdata, (tmpa_words << 2));
ret = _word_array_sub(r, tmpa_words, b, b_words, tmpa.pdata);
} else {
ret = _word_array_sub(tmpa.pdata, tmpa_words, b, b_words, tmpa.pdata);
}
} while (ret == 0);
return 0;
#else
uint32_t ret;
bignum_t *tmpa = tee_malloc(sizeof(bignum_t));
bignum_t *tmpb = tee_malloc(sizeof(bignum_t));
if ((tmpa == NULL) || (tmpb == NULL)) {
return -1;
}
uint32_t b_valid_bits = get_valid_bits(b, b_words);
memcpy(tmpa->pdata, a, (a_words << 2));
do {
uint32_t tmpa_words = get_first_nonzero_words(tmpa->pdata, a_words);
uint32_t tmpa_valid_bits = get_valid_bits(tmpa->pdata, tmpa_words);
if (tmpa_valid_bits > b_valid_bits + 1) {
memset(tmpb->pdata, 0, (a_words << 2));
word_array_left_shift(b, b_words, tmpa_valid_bits - b_valid_bits - 1,
tmpb->pdata);
uint32_t tmpb_words = get_first_nonzero_words(tmpb->pdata, a_words);
ret = _word_array_sub(tmpa->pdata, tmpa_words, tmpb->pdata, tmpb_words, tmpa->pdata);
} else if (tmpa_words == b_words) {
memcpy(r, tmpa->pdata, (tmpa_words << 2));
ret = _word_array_sub(r, tmpa_words, b, b_words, tmpa->pdata);
} else {
ret = _word_array_sub(tmpa->pdata, tmpa_words, b, b_words, tmpa->pdata);
}
} while (ret == 0);
tee_free(tmpa);
tee_free(tmpb);
return 0;
#endif
}
static uint32_t sw_exptmod_2_2m(const uint32_t *modulus, uint32_t words, uint32_t *tmp_c)
{
#ifndef RSA_USING_MALLOC
bignum_t tmp;
memset(&tmp, 0, sizeof(bignum_t));
uint32_t m_valid_bits = (words << 5);
uint32_t data1 = 0x1;
word_array_left_shift(&data1, 1, (m_valid_bits << 1), tmp.pdata);
tmp.words = get_first_nonzero_words(tmp.pdata, words * 2 + 1);
uint32_t ret = word_array_mod(tmp.pdata, tmp.words,
(uint32_t *)modulus, words, tmp_c);
if (ret != 0) {
return ret;
}
return 0;
#else
bignum_t *tmp = tee_malloc(sizeof(bignum_t));
if (tmp == NULL) {
return -1;
}
uint32_t m_valid_bits = (words << 5);
uint32_t data1 = 0x1;
word_array_left_shift(&data1, 1, (m_valid_bits << 1), tmp->pdata);
tmp->words = get_first_nonzero_words(tmp->pdata, words * 2 + 1);
uint32_t ret = word_array_mod(tmp->pdata, tmp->words,
(uint32_t *)modulus, words, tmp_c);
if (ret != 0) {
tee_free(tmp);
return ret;
}
tee_free(tmp);
return 0;
#endif
}
static void convert_byte_array(uint8_t *in, uint8_t *out, uint32_t len)
{
uint32_t idx, round = len >> 1;
for (idx = 0; idx < round; idx++) {
uint8_t tmp = *(in + idx);
*(out + idx) = *(in + len - 1 - idx);
*(out + len - 1 - idx) = tmp;
}
if (len & 0x1) {
*(out + round) = *(in + round);
}
}
static void convert_buf_to_bndata(const uint8_t *src, uint32_t src_bytes,
uint32_t *dst, uint32_t dst_words)
{
memset(dst, 0, dst_words << 2);
convert_byte_array((uint8_t *)src, (uint8_t *)dst, src_bytes);
}
static void convert_bndata_to_buf(const uint32_t *src, uint32_t src_words,
uint8_t *dst, uint32_t dst_bytes)
{
memset(dst, 0, dst_bytes);
convert_byte_array((uint8_t *)src, (uint8_t *)dst, dst_bytes);
}
static const uint8_t der_sha1_t[] = {
0x30, 0x21,
0x30, 0x09,
0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00,
0x04, 0x14
};
static const uint8_t der_md5_t[] = {
0x30, 0x20, /* type Sequence, length 0x20 (32) */
0x30, 0x0c, /* type Sequence, length 0x09 */
0x06, 0x08, /* type OID, length 0x05 */
0x2a, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* id-md5 */
0x05, 0x00, /* NULL */
0x04, 0x10 /* Octet string, length 0x10 (16), followed by md5 hash */
};
static uint32_t RSA_padding_add_PKCS1_sha1_emsa_1024(const uint8_t *dgst,
uint8_t *out,
uint32_t *outlen,
uint32_t type)
{
uint8_t *der;
uint32_t der_len;
uint32_t hashlen;
if (type == MD5_PADDING) {
der = (uint8_t *)der_md5_t;
der_len = sizeof(der_md5_t);
hashlen = MD5_HASH_SZ;
} else if (type == SHA1_PADDING) {
der = (uint8_t *)der_sha1_t;
der_len = sizeof(der_sha1_t);
hashlen = SHA1_HASH_SZ;
} else {
der = (uint8_t *)der_md5_t;
der_len = sizeof(der_md5_t);
hashlen = MD5_HASH_SZ;
}
uint32_t modulus_len = 1024 >> 3;
if (*outlen < modulus_len) {
*outlen = modulus_len;
return -1;
}
uint8_t *p = (uint8_t *)out;
*(p++) = 0x00;
*(p++) = 0x01;
/* pad out with 0xff data */
uint32_t pslen = modulus_len - 3 - der_len - hashlen;
uint32_t i;
for (i = 0; i < pslen; i++) {
p[i] = 0xff; /* PS */
}
p += pslen;
*(p++) = 0x0;
for (i = 0; i < der_len; i++) {
p[i] = der[i];
}
p += der_len;
for (i = 0; i < hashlen; i++) {
p[i] = dgst[i];
}
*outlen = modulus_len;
return 0;
}
static uint32_t RSA_padding_check_PKCS1_type_emsa(const uint8_t *dgst,
const uint8_t *in,
const uint32_t inlen,
uint8_t *is_valid,
uint32_t type)
{
uint8_t *der;
uint32_t der_len;
uint32_t hashlen;
if (type == MD5_PADDING) {
der = (uint8_t *)der_md5_t;
der_len = sizeof(der_md5_t);
hashlen = MD5_HASH_SZ;
} else if (type == SHA1_PADDING) {
der = (uint8_t *)der_sha1_t;
der_len = sizeof(der_sha1_t);
hashlen = SHA1_HASH_SZ;
} else {
der = (uint8_t *)der_md5_t;
der_len = sizeof(der_md5_t);
hashlen = MD5_HASH_SZ;
}
uint32_t modulus_len = RSA_KEY_LEN >> 3;
if (inlen != modulus_len) {
return -1;
}
*is_valid = 0;
uint32_t pslen = modulus_len - 3 - der_len - hashlen;
const uint8_t *p = in;
p++;
uint32_t ret;
if (*(p) != 0x01) {
ret = -1;
goto _verify_fail;
}
p++;
/* scan PS */
uint32_t i;
for (i = 0; i < pslen; i++) {
if (*(p + i) != 0xff) {
ret = -1;
goto _verify_fail;
}
}
p += pslen;
if ((*p) != 0x00) {
ret = -1;
goto _verify_fail;
}
p++;
/* scan t */
for (i = 0; i < der_len; i++) {
if (*(p + i) != der[i]) {
ret = -1;
goto _verify_fail;
}
}
p += der_len;
for (i = 0; i < hashlen; i++) {
if (*(p + i) != dgst[i]) {
ret = -1;
goto _verify_fail;
}
}
*is_valid = 1;
ret = 0;
_verify_fail:
return ret;
}
static uint32_t RSA_ES_padding_add_PKCS1_emsa_1024(const uint8_t *dgst,
uint32_t dgstlen,
uint8_t *out,
uint32_t *outlen,
uint32_t padding)
{
uint32_t modulus_len = RSA_KEY_LEN >> 3;
if (*outlen < modulus_len) {
*outlen = modulus_len;
return 1;
}
uint8_t *p = (uint8_t *)out;
*(p++) = 0x00;
*(p++) = 0x02;
/* pad out with 0xff data */
uint32_t pslen = modulus_len - 3 - dgstlen;
uint32_t i;
for (i = 0; i < pslen; i++) {
p[i] = 0xff; /* PS */
}
p += pslen;
*(p++) = 0x0;
for (i = 0; i < dgstlen; i++) {
p[i] = dgst[i];
}
*outlen = modulus_len;
return 0;
}
static uint32_t RSA_ES_padding_check_PKCS1_type_emsa(uint8_t *out, uint32_t *out_size,
uint8_t *src, uint32_t src_size, uint32_t padding)
{
uint32_t modulus_len = RSA_KEY_LEN >> 3;
if (src_size < modulus_len) {
return 1;
}
uint8_t *p = (uint8_t *)src;
uint8_t *p_src = p;
*(p++) = 0x00;
if (padding == PKCS1_PADDING) {
if (*(p++) != 0x02) {
return 1;
}
} else {
if (*(p++) != 0x01) {
return 1;
}
}
uint32_t pslen = src_size - 2;
while (pslen--) {
if (*(p++) == 0x0) {
break;
}
}
if (padding == PKCS1_PADDING) {
*out_size = pslen;
} else {
*out_size = modulus_len;
}
uint32_t i;
for (i = 0; i < *out_size; i++) {
if (padding == PKCS1_PADDING) {
out[i] = p[i];
} else {
out[i] = p_src[i];
}
}
return 0;
}
int rsa_encrypt(uint8_t *n, uint8_t *e,
uint8_t *src, uint32_t src_size,
uint8_t *out, uint32_t *out_size,
uint32_t padding)
{
uint32_t ret;
uint32_t tmp_n[RSA_KEY_WORD];
uint32_t tmp_e[RSA_KEY_WORD];
uint32_t tmp_src_padded[RSA_KEY_WORD];
uint32_t tmp_out[RSA_KEY_WORD];
uint32_t keywords = RSA_KEY_WORD;
uint32_t keybytes = RSA_KEY_BYTE;
convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
convert_buf_to_bndata(e, keybytes, tmp_e, keywords);
uint32_t tmp_src_padded_len = keybytes;
if (padding == PKCS1_PADDING) {
ret = RSA_ES_padding_add_PKCS1_emsa_1024((const uint8_t *)src, src_size,
(uint8_t *)tmp_src_padded,
&tmp_src_padded_len, padding);
if (ret != 0) {
return ret;
}
convert_byte_array((uint8_t *)tmp_src_padded, (uint8_t *)tmp_src_padded, tmp_src_padded_len);
} else {
convert_byte_array((uint8_t *)src, (uint8_t *)tmp_src_padded, tmp_src_padded_len);
}
ret = rsa_exptmod_1024(tmp_n, tmp_e, tmp_src_padded, tmp_out);
if (ret != 0) {
return ret;
}
convert_bndata_to_buf(tmp_out, keywords, out, keybytes);
*out_size = keybytes;
return ret;
}
int rsa_decrypt(uint8_t *n, uint8_t *d,
uint8_t *src, uint32_t src_size,
uint8_t *out, uint32_t *out_size,
uint32_t padding)
{
uint32_t ret;
uint32_t tmp_n[RSA_KEY_WORD];
uint32_t tmp_d[RSA_KEY_WORD];
uint32_t tmp_dst_padded[RSA_KEY_WORD];
uint32_t tmp_sig[RSA_KEY_WORD];
uint32_t keywords = RSA_KEY_WORD;
uint32_t keybytes = RSA_KEY_BYTE;
convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
convert_buf_to_bndata(d, keybytes, tmp_d, keywords);
convert_buf_to_bndata(src, src_size, tmp_sig, keywords);
ret = rsa_exptmod_1024(tmp_n, tmp_d, tmp_sig, tmp_dst_padded);
\
if (ret != 0) {
return ret;
}
convert_byte_array((uint8_t *)tmp_dst_padded,
(uint8_t *)tmp_dst_padded, keybytes);
ret = RSA_ES_padding_check_PKCS1_type_emsa(out, out_size,
(uint8_t *)tmp_dst_padded,
keybytes, padding);
return ret;
}
int rsa_sign(uint8_t *n, uint8_t *d,
uint8_t *src, uint32_t src_size,
uint8_t *signature, uint32_t *sig_size, uint32_t type)
{
uint32_t ret;
uint32_t tmp_n[RSA_KEY_WORD];
uint32_t tmp_d[RSA_KEY_WORD];
uint32_t tmp_src_padded[RSA_KEY_WORD];
uint32_t tmp_sig[RSA_KEY_WORD];
uint32_t keywords = RSA_KEY_WORD;
uint32_t keybytes = RSA_KEY_BYTE;
convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
convert_buf_to_bndata(d, keybytes, tmp_d, keywords);
uint32_t tmp_src_padded_len = keybytes;
ret = RSA_padding_add_PKCS1_sha1_emsa_1024((const uint8_t *)src,
(uint8_t *)tmp_src_padded,
&tmp_src_padded_len, type);
if (ret != 0) {
return ret;
}
convert_byte_array((uint8_t *)tmp_src_padded, (uint8_t *)tmp_src_padded, keybytes);
ret = rsa_exptmod_1024(tmp_n, tmp_d, tmp_src_padded, tmp_sig);
if (ret != 0) {
return ret;
}
convert_bndata_to_buf(tmp_sig, keywords, signature, keybytes);
*sig_size = RSA_KEY_BYTE;
return 0;
}
int rsa_verify(uint8_t *n, uint8_t *e,
uint8_t *src, uint32_t src_size,
uint8_t *signature, uint32_t sig_size,
uint8_t *result, uint32_t type)
{
uint32_t ret;
uint32_t tmp_n[RSA_KEY_WORD];
uint32_t tmp_e[RSA_KEY_WORD];
uint32_t tmp_dst_padded[RSA_KEY_WORD];
uint32_t tmp_sig[RSA_KEY_WORD];
*result = 0;
uint32_t keywords = RSA_KEY_WORD;
uint32_t keybytes = RSA_KEY_BYTE;
convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
convert_buf_to_bndata(e, keybytes, tmp_e, keywords);
convert_buf_to_bndata(signature, sig_size, tmp_sig, keywords);
ret = rsa_exptmod_1024(tmp_n, tmp_e, tmp_sig, tmp_dst_padded);
if (ret != 0) {
return ret;
}
convert_byte_array((uint8_t *)tmp_dst_padded,
(uint8_t *)tmp_dst_padded, keybytes);
ret = RSA_padding_check_PKCS1_type_emsa(src,
(const uint8_t *)tmp_dst_padded,
keybytes,
result,
type);
return ret;
}
int rsa_sw_exptmod_2_2m(uint8_t *modulus)
{
uint32_t tmp_n[RSA_KEY_WORD];
uint32_t keywords = RSA_KEY_WORD;
uint32_t keybytes = RSA_KEY_BYTE;
convert_buf_to_bndata(modulus, keybytes, tmp_n, keywords);
sw_exptmod_2_2m(tmp_n, RSA_KEY_WORD, g_acc);
return 0;
}
int32_t __attribute__((weak)) target_get_rsa_count(void)
{
return 0;
}
int32_t __attribute__((weak)) target_get_rsa(int32_t idx, uint32_t *base, uint32_t *irq)
{
return NULL;
}
/**
\brief get rsa handle count.
\return rsa handle count
*/
int32_t csi_rsa_get_instance_count(void)
{
return target_get_rsa_count();
}
/**
\brief Initialize RSA Interface. 1. Initializes the resources needed for the RSA interface 2.registers event callback function
\param[in] idx must not exceed return value of csi_rsa_get_instance_count()
\param[in] cb_event Pointer to \ref rsa_event_cb_t
\return pointer to rsa handle
*/
rsa_handle_t csi_rsa_initialize(int32_t idx, rsa_event_cb_t cb_event)
{
if (idx < 0 || idx >= CONFIG_RSA_NUM) {
return NULL;
}
/* obtain the rsa information */
uint32_t base = 0u;
uint32_t irq;
int32_t real_idx = target_get_rsa(idx, &base, &irq);
if (real_idx != idx) {
return NULL;
}
ck_rsa_priv_t *rsa_priv = &rsa_handle[idx];
rsa_priv->base = base;
rsa_priv->irq = irq;
/* initialize the rsa context */
rsa_priv->cb = cb_event;
rsa_priv->data_bit = RSA_DATA_BITS_1024;
rsa_priv->endian = RSA_ENDIAN_MODE_LITTLE;
rsa_priv->padding.padding_type = RSA_PADDING_MODE_PKCS1;
rsa_priv->padding.hash_type = RSA_HASH_TYPE_SHA1;
rsa_priv->status.busy = 0;
return (rsa_handle_t)rsa_priv;
}
/**
\brief De-initialize RSA Interface. stops operation and releases the software resources used by the interface
\param[in] handle rsa handle to operate.
\return error code
*/
int32_t csi_rsa_uninitialize(rsa_handle_t handle)
{
RSA_NULL_PARAM_CHK(handle);
ck_rsa_priv_t *rsa_priv = handle;
rsa_priv->cb = NULL;
return 0;
}
/**
\brief Get driver capabilities.
\param[in] handle rsa handle to operate.
\return \ref rsa_capabilities_t
*/
rsa_capabilities_t csi_rsa_get_capabilities(rsa_handle_t handle)
{
return driver_capabilities;
}
/**
\brief config rsa mode.
\param[in] handle rsa handle to operate.
\param[in] data_bits \ref rsa_data_bits_e
\param[in] endian \ref rsa_endian_mode_e
\return error code
*/
int32_t csi_rsa_config(rsa_handle_t handle,
rsa_data_bits_e data_bits,
rsa_endian_mode_e endian
)
{
RSA_NULL_PARAM_CHK(handle);
ck_rsa_priv_t *rsa_priv = handle;
rsa_reg = (ck_rsa_reg_t *)(rsa_priv->base);
/* config the data bits */
switch (data_bits) {
case RSA_DATA_BITS_192:
case RSA_DATA_BITS_256:
case RSA_DATA_BITS_512:
case RSA_DATA_BITS_2048:
return ERR_RSA(EDRV_UNSUPPORTED);
case RSA_DATA_BITS_1024:
rsa_priv->data_bit = data_bits;
break;
default:
return ERR_RSA(EDRV_PARAMETER);
}
/* config the endian mode */
if (endian == RSA_ENDIAN_MODE_LITTLE) {
rsa_priv->endian = endian;
} else if (endian == RSA_ENDIAN_MODE_BIG) {
return ERR_RSA(EDRV_UNSUPPORTED);
} else {
return ERR_RSA(EDRV_PARAMETER);
}
return 0;
}
/**
\brief encrypt
\param[in] handle rsa handle to operate.
\param[in] n Pointer to the public modulus
\param[in] e Pointer to the public exponent
\param[in] src Pointer to the source data.
\param[in] src_size the source data len
\param[out] out Pointer to the result buffer
\param[out] out_size the result size
\param[in] padding \ref rsa_padding_t
\return error code
*/
int32_t csi_rsa_encrypt(rsa_handle_t handle, void *n, void *e, void *src, int32_t src_size, void *out, uint32_t *out_size, rsa_padding_t padding)
{
RSA_NULL_PARAM_CHK(handle);
RSA_NULL_PARAM_CHK(n);
RSA_NULL_PARAM_CHK(e);
RSA_NULL_PARAM_CHK(src);
RSA_NULL_PARAM_CHK(out);
RSA_NULL_PARAM_CHK(out_size);
if (src_size <= 0 || (padding.padding_type != RSA_PADDING_MODE_PKCS1 && padding.padding_type != RSA_PADDING_MODE_NO)) {
return ERR_RSA(EDRV_PARAMETER);
}
ck_rsa_priv_t *rsa_priv = handle;
rsa_priv->status.busy = 1U;
rsa_encrypt((uint8_t *)n, (uint8_t *)e, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)out, (uint32_t *)out_size, (uint32_t)(padding.padding_type));
rsa_priv->status.busy = 0U;
if (rsa_priv->cb) {
rsa_priv->cb(RSA_EVENT_ENCRYPT_COMPLETE);
}
return 0;
}
/**
\brief decrypt
\param[in] handle rsa handle to operate.
\param[in] n Pointer to the public modulus
\param[in] d Pointer to the privte exponent
\param[in] src Pointer to the source data.
\param[in] src_size the source data len
\param[out] out Pointer to the result buffer
\param[out] out_size the result size
\param[in] padding \ref rsa_padding_t
\return error code
*/
int32_t csi_rsa_decrypt(rsa_handle_t handle, void *n, void *d, void *src, uint32_t src_size, void *out, uint32_t *out_size, rsa_padding_t padding)
{
RSA_NULL_PARAM_CHK(handle);
RSA_NULL_PARAM_CHK(n);
RSA_NULL_PARAM_CHK(d);
RSA_NULL_PARAM_CHK(src);
RSA_NULL_PARAM_CHK(out);
RSA_NULL_PARAM_CHK(out_size);
if (src_size <= 0 || (padding.padding_type != RSA_PADDING_MODE_PKCS1 && padding.padding_type != RSA_PADDING_MODE_NO)) {
return ERR_RSA(EDRV_PARAMETER);
}
ck_rsa_priv_t *rsa_priv = handle;
rsa_priv->status.busy = 1U;
rsa_decrypt((uint8_t *)n, (uint8_t *)d, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)out, (uint32_t *)out_size, (uint32_t)(padding.padding_type));
rsa_priv->status.busy = 0U;
if (rsa_priv->cb) {
rsa_priv->cb(RSA_EVENT_DECRYPT_COMPLETE);
}
return 0;
}
/**
\brief rsa sign
\param[in] handle rsa handle to operate.
\param[in] n Pointer to the public modulus
\param[in] d Pointer to the privte exponent
\param[in] src Pointer to the source data.
\param[in] src_size the source data len
\param[out] signature Pointer to the signature
\param[out] sig_size the signature size
\param[in] padding \ref rsa_padding_t
\return error code
*/
int32_t csi_rsa_sign(rsa_handle_t handle, void *n, void *d, void *src, uint32_t src_size, void *signature, void *sig_size, rsa_padding_t padding)
{
RSA_NULL_PARAM_CHK(handle);
RSA_NULL_PARAM_CHK(n);
RSA_NULL_PARAM_CHK(d);
RSA_NULL_PARAM_CHK(src);
RSA_NULL_PARAM_CHK(signature);
RSA_NULL_PARAM_CHK(sig_size);
if (src_size <= 0 || (padding.hash_type != RSA_HASH_TYPE_MD5 && padding.hash_type != RSA_HASH_TYPE_SHA1)) {
return ERR_RSA(EDRV_PARAMETER);
}
ck_rsa_priv_t *rsa_priv = handle;
rsa_priv->status.busy = 1U;
rsa_sign((uint8_t *)n, (uint8_t *)d, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)signature, (uint32_t *)sig_size, (uint32_t)(padding.hash_type));
rsa_priv->status.busy = 0U;
if (rsa_priv->cb) {
rsa_priv->cb(RSA_EVENT_SIGN_COMPLETE);
}
return 0;
}
/**
\brief rsa verify
\param[in] handle rsa handle to operate.
\param[in] n Pointer to the public modulus
\param[in] e Pointer to the public exponent
\param[in] src Pointer to the source data.
\param[in] src_size the source data len
\param[in] signature Pointer to the signature
\param[in] sig_size the signature size
\param[out] result Pointer to the result
\param[in] padding \ref rsa_padding_t
\return error code
*/
int32_t csi_rsa_verify(rsa_handle_t handle, void *n, void *e, void *src, uint32_t src_size, void *signature, uint32_t sig_size, void *result, rsa_padding_t padding)
{
RSA_NULL_PARAM_CHK(handle);
RSA_NULL_PARAM_CHK(n);
RSA_NULL_PARAM_CHK(e);
RSA_NULL_PARAM_CHK(src);
RSA_NULL_PARAM_CHK(signature);
RSA_NULL_PARAM_CHK(result);
if (src_size <= 0 || sig_size <= 0 || (padding.hash_type != RSA_HASH_TYPE_MD5 && padding.hash_type != RSA_HASH_TYPE_SHA1)) {
return ERR_RSA(EDRV_PARAMETER);
}
ck_rsa_priv_t *rsa_priv = handle;
rsa_priv->status.busy = 1U;
rsa_verify((uint8_t *)n, (uint8_t *)e, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)signature, sig_size, (uint8_t *)result, (uint32_t)(padding.hash_type));
rsa_priv->status.busy = 0U;
if (rsa_priv->cb) {
rsa_priv->cb(RSA_EVENT_VERIFY_COMPLETE);
}
return 0;
}
/**
\brief Get RSA status.
\param[in] handle rsa handle to operate.
\return RSA status \ref rsa_status_t
*/
rsa_status_t csi_rsa_get_status(rsa_handle_t handle)
{
ck_rsa_priv_t *rsa_priv = handle;
return rsa_priv->status;
}