4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 19:37:24 +08:00

324 lines
9.1 KiB
C
Raw Normal View History

分离内存分配接口与内存分配算法 (#5175) * [kernel][mem] Multiple instances of small memory allocation algorithm * [kernel][mem] Change small memory management algorithm memory header flag * [kernel][mem] Fix assertion problem * [kernel][slab] Multiple instances of slab memory management algorithm * [kernel][memheap] Remove rt_malloc/rt_free/rt_realloc and other related memory interfaces * [kernel][mem] Clean up memory space of small memory management objects * [kernel][kservice] Add memory application interface and thread protection interface * [kernel][kservice] Fix function return value problem * [kernel][memheap] Optimize memheaptrace print * [kernel][memheap] Support best mode * [kernel][memory] Remove semaphore lock * [kernel][memheap] Add locked flag * [kernel][memory] Support malloc memory in interrupt * [kernel][memheap] Add 'memheapcheck' cmd * [kernel][mem] Fix failure to request full memory * [kernel][memheap] Fix compilation warning * [kernel][mem] Fix mem realloc ASSERT * [examples][testcases] Add small mem testcase * [examples][mem_tc] Modify test memory size * [examples][testcases] Add slab memory management algorithm test case * [examples][testcases] fix small memory management algorithm test case * [kernel][memory] Adjusting memory allocation algorithm object definition and interface * [kernel][memory] Fix compilation warning * [examples][utest] Fix mem test case * [examples][utest] fix slab test case * [utest][testcases] Shorten test time * [kernel][memory] Formatting code * [examples][utest] Adjust test run time * [examples][utest] Formatting code * [bsp] update all rtconfig.h
2021-12-16 16:23:58 +08:00
/*
* Copyright (c) 2006-2019, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-10-14 tyx the first version
*/
#include <rtthread.h>
#include <stdlib.h>
#include "utest.h"
#define TEST_SLAB_SIZE 1024 * 1024
static int _mem_cmp(void *ptr, rt_uint8_t v, rt_size_t size)
{
while (size-- != 0)
{
if (*(rt_uint8_t *)ptr != v)
return *(rt_uint8_t *)ptr - v;
}
return 0;
}
struct slab_alloc_context
{
rt_list_t node;
rt_size_t size;
rt_uint8_t magic;
};
struct slab_alloc_head
{
rt_list_t list;
rt_size_t count;
rt_tick_t start;
rt_tick_t end;
rt_tick_t interval;
};
#define SLAB_RANG_ALLOC_BLK_MIN 2
#define SLAB_RANG_ALLOC_BLK_MAX 5
#define SLAB_RANG_ALLOC_TEST_TIME 5
static void slab_alloc_test(void)
{
struct slab_alloc_head head;
rt_uint8_t *buf;
rt_slab_t heap;
rt_size_t size;
struct slab_alloc_context *ctx;
/* init */
rt_list_init(&head.list);
head.count = 0;
head.start = rt_tick_get();
head.end = rt_tick_get() + rt_tick_from_millisecond(SLAB_RANG_ALLOC_TEST_TIME * 1000);
head.interval = (head.end - head.start) / 20;
buf = rt_malloc(TEST_SLAB_SIZE);
uassert_not_null(buf);
uassert_int_equal(RT_ALIGN((rt_ubase_t)buf, RT_ALIGN_SIZE), (rt_ubase_t)buf);
rt_memset(buf, 0xAA, TEST_SLAB_SIZE);
heap = rt_slab_init("slab_tc", buf, TEST_SLAB_SIZE);
// test run
while (head.end - head.start < RT_TICK_MAX / 2)
{
if (rt_tick_get() - head.start >= head.interval)
{
head.start = rt_tick_get();
rt_kprintf("#");
}
// %60 probability to perform alloc operation
if (rand() % 10 >= 4)
{
size = rand() % SLAB_RANG_ALLOC_BLK_MAX + SLAB_RANG_ALLOC_BLK_MIN;
size *= sizeof(struct slab_alloc_context);
ctx = rt_slab_alloc(heap, size);
if (ctx == RT_NULL)
{
if (head.count == 0)
{
break;
}
size = head.count / 2;
while (size != head.count)
{
ctx = rt_list_first_entry(&head.list, struct slab_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_slab_free(heap, ctx);
head.count --;
}
continue;
}
//if (RT_ALIGN((rt_ubase_t)ctx, RT_ALIGN_SIZE) != (rt_ubase_t)ctx)
//{
// uassert_int_equal(RT_ALIGN((rt_ubase_t)ctx, RT_ALIGN_SIZE), (rt_ubase_t)ctx);
//}
rt_memset(ctx, 0, size);
rt_list_init(&ctx->node);
ctx->size = size;
ctx->magic = rand() & 0xff;
if (ctx->size > sizeof(*ctx))
{
rt_memset(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
rt_list_insert_after(&head.list, &ctx->node);
head.count += 1;
}
else
{
if (!rt_list_isempty(&head.list))
{
ctx = rt_list_first_entry(&head.list, struct slab_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_slab_free(heap, ctx);
head.count --;
}
}
}
while (!rt_list_isempty(&head.list))
{
ctx = rt_list_first_entry(&head.list, struct slab_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_slab_free(heap, ctx);
head.count --;
}
uassert_int_equal(head.count, 0);
// slab heap deinit
rt_slab_detach(heap);
/* release test resources */
rt_free(buf);
}
#define SLAB_RANG_REALLOC_BLK_MIN 0
#define SLAB_RANG_REALLOC_BLK_MAX 5
#define SLAB_RANG_REALLOC_TEST_TIME 5
struct slab_realloc_context
{
rt_size_t size;
rt_uint8_t magic;
};
struct slab_realloc_head
{
struct slab_realloc_context **ctx_tab;
rt_size_t count;
rt_tick_t start;
rt_tick_t end;
rt_tick_t interval;
};
static void slab_realloc_test(void)
{
struct slab_realloc_head head;
rt_uint8_t *buf;
rt_slab_t heap;
rt_size_t size, idx;
struct slab_realloc_context *ctx;
int res;
size = RT_ALIGN(sizeof(struct slab_realloc_context), RT_ALIGN_SIZE) + RT_ALIGN_SIZE;
size = TEST_SLAB_SIZE / size;
/* init */
head.ctx_tab = RT_NULL;
head.count = size;
head.start = rt_tick_get();
head.end = rt_tick_get() + rt_tick_from_millisecond(SLAB_RANG_ALLOC_TEST_TIME * 1000);
head.interval = (head.end - head.start) / 20;
buf = rt_malloc(TEST_SLAB_SIZE);
uassert_not_null(buf);
uassert_int_equal(RT_ALIGN((rt_ubase_t)buf, RT_ALIGN_SIZE), (rt_ubase_t)buf);
rt_memset(buf, 0xAA, TEST_SLAB_SIZE);
heap = rt_slab_init("slab_tc", buf, TEST_SLAB_SIZE);
/* init ctx tab */
size = head.count * sizeof(struct slab_realloc_context *);
head.ctx_tab = rt_slab_alloc(heap, size);
uassert_not_null(head.ctx_tab);
rt_memset(head.ctx_tab, 0, size);
// test run
while (head.end - head.start < RT_TICK_MAX / 2)
{
if (rt_tick_get() - head.start >= head.interval)
{
head.start = rt_tick_get();
rt_kprintf("#");
}
size = rand() % SLAB_RANG_ALLOC_BLK_MAX + SLAB_RANG_ALLOC_BLK_MIN;
size *= sizeof(struct slab_realloc_context);
idx = rand() % head.count;
ctx = rt_slab_realloc(heap, head.ctx_tab[idx], size);
if (ctx == RT_NULL)
{
if (size == 0)
{
if (head.ctx_tab[idx])
{
head.ctx_tab[idx] = RT_NULL;
}
}
else
{
for (idx = 0; idx < head.count; idx++)
{
ctx = head.ctx_tab[idx];
if (rand() % 2 && ctx)
{
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_slab_realloc(heap, ctx, 0);
head.ctx_tab[idx] = RT_NULL;
}
}
}
continue;
}
/* check slab */
if (head.ctx_tab[idx] != RT_NULL)
{
res = 0;
if (ctx->size < size)
{
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
}
else
{
if (size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, size - sizeof(*ctx));
}
}
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
/* init slab */
ctx->magic = rand() & 0xff;
ctx->size = size;
if (ctx->size > sizeof(*ctx))
{
rt_memset(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
head.ctx_tab[idx] = ctx;
}
// free all slab
for (idx = 0; idx < head.count; idx++)
{
ctx = head.ctx_tab[idx];
if (ctx == RT_NULL)
{
continue;
}
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_slab_realloc(heap, ctx, 0);
head.ctx_tab[idx] = RT_NULL;
}
// slab heap deinit
rt_slab_detach(heap);
/* release test resources */
rt_free(buf);
}
static rt_err_t utest_tc_init(void)
{
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(slab_alloc_test);
UTEST_UNIT_RUN(slab_realloc_test);
}
UTEST_TC_EXPORT(testcase, "testcases.kernel.slab_tc", utest_tc_init, utest_tc_cleanup, 20);