mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-25 23:07:24 +08:00
527 lines
19 KiB
C
527 lines
19 KiB
C
|
/*
|
||
|
* The Clear BSD License
|
||
|
* Copyright (c) 2016, Freescale Semiconductor, Inc.
|
||
|
* Copyright 2016-2017 NXP
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without modification,
|
||
|
* are permitted (subject to the limitations in the disclaimer below) provided
|
||
|
* that the following conditions are met:
|
||
|
*
|
||
|
* o Redistributions of source code must retain the above copyright notice, this list
|
||
|
* of conditions and the following disclaimer.
|
||
|
*
|
||
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
||
|
* list of conditions and the following disclaimer in the documentation and/or
|
||
|
* other materials provided with the distribution.
|
||
|
*
|
||
|
* o Neither the name of the copyright holder nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from this
|
||
|
* software without specific prior written permission.
|
||
|
*
|
||
|
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "fsl_spi_dma.h"
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* Definitions
|
||
|
******************************************************************************/
|
||
|
|
||
|
/* Component ID definition, used by tools. */
|
||
|
#ifndef FSL_COMPONENT_ID
|
||
|
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_spi_dma"
|
||
|
#endif
|
||
|
|
||
|
/*<! Structure definition for spi_dma_private_handle_t. The structure is private. */
|
||
|
typedef struct _spi_dma_private_handle
|
||
|
{
|
||
|
SPI_Type *base;
|
||
|
spi_dma_handle_t *handle;
|
||
|
} spi_dma_private_handle_t;
|
||
|
|
||
|
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
|
||
|
enum _spi_dma_states_t
|
||
|
{
|
||
|
kSPI_Idle = 0x0, /*!< SPI is idle state */
|
||
|
kSPI_Busy /*!< SPI is busy tranferring data. */
|
||
|
};
|
||
|
|
||
|
typedef struct _spi_dma_txdummy
|
||
|
{
|
||
|
uint32_t lastWord;
|
||
|
uint32_t word;
|
||
|
} spi_dma_txdummy_t;
|
||
|
|
||
|
/*<! Private handle only used for internally. */
|
||
|
static spi_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_SPI_COUNT];
|
||
|
/*******************************************************************************
|
||
|
* Prototypes
|
||
|
******************************************************************************/
|
||
|
|
||
|
/*!
|
||
|
* @brief DMA callback function for SPI send transfer.
|
||
|
*
|
||
|
* @param handle DMA handle pointer.
|
||
|
* @param userData User data for DMA callback function.
|
||
|
*/
|
||
|
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
|
||
|
|
||
|
/*!
|
||
|
* @brief DMA callback function for SPI receive transfer.
|
||
|
*
|
||
|
* @param handle DMA handle pointer.
|
||
|
* @param userData User data for DMA callback function.
|
||
|
*/
|
||
|
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* Variables
|
||
|
******************************************************************************/
|
||
|
#if defined(__ICCARM__)
|
||
|
#pragma data_alignment = 4
|
||
|
static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#elif defined(__CC_ARM)
|
||
|
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#elif defined(__GNUC__)
|
||
|
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ICCARM__)
|
||
|
#pragma data_alignment = 4
|
||
|
static uint16_t s_rxDummy;
|
||
|
static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
|
||
|
#elif defined(__CC_ARM)
|
||
|
__attribute__((aligned(4))) static uint16_t s_rxDummy;
|
||
|
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
|
||
|
#elif defined(__GNUC__)
|
||
|
__attribute__((aligned(4))) static uint16_t s_rxDummy;
|
||
|
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ICCARM__)
|
||
|
#pragma data_alignment = 16
|
||
|
static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#elif defined(__CC_ARM)
|
||
|
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#elif defined(__GNUC__)
|
||
|
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
|
||
|
#endif
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* Code
|
||
|
******************************************************************************/
|
||
|
|
||
|
static void XferToFifoWR(spi_transfer_t *xfer, uint32_t *fifowr)
|
||
|
{
|
||
|
*fifowr |= xfer->configFlags & (uint32_t)kSPI_FrameDelay ? (uint32_t)kSPI_FrameDelay : 0;
|
||
|
*fifowr |= xfer->configFlags & (uint32_t)kSPI_FrameAssert ? (uint32_t)kSPI_FrameAssert : 0;
|
||
|
}
|
||
|
|
||
|
static void SpiConfigToFifoWR(spi_config_t *config, uint32_t *fifowr)
|
||
|
{
|
||
|
*fifowr |= (SPI_DEASSERT_ALL & (~SPI_DEASSERTNUM_SSEL(config->sselNum)));
|
||
|
/* set width of data - range asserted at entry */
|
||
|
*fifowr |= SPI_FIFOWR_LEN(config->dataWidth);
|
||
|
}
|
||
|
|
||
|
static void PrepareTxLastWord(spi_transfer_t *xfer, uint32_t *txLastWord, spi_config_t *config)
|
||
|
{
|
||
|
if (config->dataWidth > kSPI_Data8Bits)
|
||
|
{
|
||
|
*txLastWord = (((uint32_t)xfer->txData[xfer->dataSize - 1] << 8U) | (xfer->txData[xfer->dataSize - 2]));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
*txLastWord = xfer->txData[xfer->dataSize - 1];
|
||
|
}
|
||
|
XferToFifoWR(xfer, txLastWord);
|
||
|
SpiConfigToFifoWR(config, txLastWord);
|
||
|
}
|
||
|
|
||
|
static void SPI_SetupDummy(SPI_Type *base, spi_dma_txdummy_t *dummy, spi_transfer_t *xfer, spi_config_t *spi_config_p)
|
||
|
{
|
||
|
uint32_t instance = SPI_GetInstance(base);
|
||
|
dummy->word = ((uint32_t)s_dummyData[instance] << 8U | s_dummyData[instance]);
|
||
|
dummy->lastWord = ((uint32_t)s_dummyData[instance] << 8U | s_dummyData[instance]);
|
||
|
XferToFifoWR(xfer, &dummy->word);
|
||
|
XferToFifoWR(xfer, &dummy->lastWord);
|
||
|
SpiConfigToFifoWR(spi_config_p, &dummy->word);
|
||
|
SpiConfigToFifoWR(spi_config_p, &dummy->lastWord);
|
||
|
/* Clear the end of transfer bit for continue word transfer. */
|
||
|
dummy->word &= (uint32_t)(~kSPI_FrameAssert);
|
||
|
}
|
||
|
|
||
|
status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
|
||
|
spi_dma_handle_t *handle,
|
||
|
spi_dma_callback_t callback,
|
||
|
void *userData,
|
||
|
dma_handle_t *txHandle,
|
||
|
dma_handle_t *rxHandle)
|
||
|
{
|
||
|
int32_t instance = 0;
|
||
|
|
||
|
/* check 'base' */
|
||
|
assert(!(NULL == base));
|
||
|
if (NULL == base)
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
/* check 'handle' */
|
||
|
assert(!(NULL == handle));
|
||
|
if (NULL == handle)
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
|
||
|
instance = SPI_GetInstance(base);
|
||
|
|
||
|
memset(handle, 0, sizeof(*handle));
|
||
|
/* Set spi base to handle */
|
||
|
handle->txHandle = txHandle;
|
||
|
handle->rxHandle = rxHandle;
|
||
|
handle->callback = callback;
|
||
|
handle->userData = userData;
|
||
|
|
||
|
/* Set SPI state to idle */
|
||
|
handle->state = kSPI_Idle;
|
||
|
|
||
|
/* Set handle to global state */
|
||
|
s_dmaPrivateHandle[instance].base = base;
|
||
|
s_dmaPrivateHandle[instance].handle = handle;
|
||
|
|
||
|
/* Install callback for Tx dma channel */
|
||
|
DMA_SetCallback(handle->txHandle, SPI_TxDMACallback, &s_dmaPrivateHandle[instance]);
|
||
|
DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]);
|
||
|
|
||
|
return kStatus_Success;
|
||
|
}
|
||
|
|
||
|
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
|
||
|
{
|
||
|
int32_t instance;
|
||
|
status_t result = kStatus_Success;
|
||
|
spi_config_t *spi_config_p;
|
||
|
|
||
|
assert(!((NULL == handle) || (NULL == xfer)));
|
||
|
if ((NULL == handle) || (NULL == xfer))
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
|
||
|
/* Byte size is zero. */
|
||
|
assert(!(xfer->dataSize == 0));
|
||
|
if (xfer->dataSize == 0)
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
/* cannot get instance from base address */
|
||
|
instance = SPI_GetInstance(base);
|
||
|
assert(!(instance < 0));
|
||
|
if (instance < 0)
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
|
||
|
/* Check if the device is busy */
|
||
|
if (handle->state == kSPI_Busy)
|
||
|
{
|
||
|
return kStatus_SPI_Busy;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
uint32_t tmp;
|
||
|
dma_transfer_config_t xferConfig = {0};
|
||
|
spi_config_p = (spi_config_t *)SPI_GetConfig(base);
|
||
|
|
||
|
handle->state = kStatus_SPI_Busy;
|
||
|
handle->transferSize = xfer->dataSize;
|
||
|
|
||
|
/* receive */
|
||
|
SPI_EnableRxDMA(base, true);
|
||
|
if (xfer->rxData)
|
||
|
{
|
||
|
DMA_PrepareTransfer(&xferConfig, ((void *)((uint32_t)&base->FIFORD)), xfer->rxData,
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
xfer->dataSize, kDMA_PeripheralToMemory, NULL);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DMA_PrepareTransfer(&xferConfig, ((void *)((uint32_t)&base->FIFORD)), &s_rxDummy,
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
xfer->dataSize, kDMA_StaticToStatic, NULL);
|
||
|
}
|
||
|
DMA_SubmitTransfer(handle->rxHandle, &xferConfig);
|
||
|
handle->rxInProgress = true;
|
||
|
DMA_StartTransfer(handle->rxHandle);
|
||
|
|
||
|
/* transmit */
|
||
|
SPI_EnableTxDMA(base, true);
|
||
|
|
||
|
if (xfer->configFlags & kSPI_FrameAssert)
|
||
|
{
|
||
|
PrepareTxLastWord(xfer, &s_txLastWord[instance], spi_config_p);
|
||
|
}
|
||
|
|
||
|
if (xfer->txData)
|
||
|
{
|
||
|
/* If end of tranfer function is enabled and data transfer frame is bigger then 1, use dma
|
||
|
* descriptor to send the last data.
|
||
|
*/
|
||
|
if ((xfer->configFlags & kSPI_FrameAssert) &&
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2) : (xfer->dataSize > 1)))
|
||
|
{
|
||
|
dma_xfercfg_t tmp_xfercfg = {0};
|
||
|
tmp_xfercfg.valid = true;
|
||
|
tmp_xfercfg.swtrig = true;
|
||
|
tmp_xfercfg.intA = true;
|
||
|
tmp_xfercfg.byteWidth = sizeof(uint32_t);
|
||
|
tmp_xfercfg.srcInc = 0;
|
||
|
tmp_xfercfg.dstInc = 0;
|
||
|
tmp_xfercfg.transferCount = 1;
|
||
|
/* Create chained descriptor to transmit last word */
|
||
|
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txLastWord[instance],
|
||
|
((void *)((uint32_t)&base->FIFOWR)), NULL);
|
||
|
|
||
|
DMA_PrepareTransfer(
|
||
|
&xferConfig, xfer->txData, ((void *)((uint32_t)&base->FIFOWR)),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize - 2) : (xfer->dataSize - 1)),
|
||
|
kDMA_MemoryToPeripheral, &s_spi_descriptor_table[instance]);
|
||
|
/* Disable interrupts for first descriptor to avoid calling callback twice. */
|
||
|
xferConfig.xfercfg.intA = false;
|
||
|
xferConfig.xfercfg.intB = false;
|
||
|
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
|
||
|
if (result != kStatus_Success)
|
||
|
{
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DMA_PrepareTransfer(
|
||
|
&xferConfig, xfer->txData, ((void *)((uint32_t)&base->FIFOWR)),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
xfer->dataSize, kDMA_MemoryToPeripheral, NULL);
|
||
|
DMA_SubmitTransfer(handle->txHandle, &xferConfig);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Setup tx dummy data. */
|
||
|
SPI_SetupDummy(base, &s_txDummy[instance], xfer, spi_config_p);
|
||
|
if ((xfer->configFlags & kSPI_FrameAssert) &&
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2) : (xfer->dataSize > 1)))
|
||
|
{
|
||
|
dma_xfercfg_t tmp_xfercfg = {0};
|
||
|
tmp_xfercfg.valid = true;
|
||
|
tmp_xfercfg.swtrig = true;
|
||
|
tmp_xfercfg.intA = true;
|
||
|
tmp_xfercfg.byteWidth = sizeof(uint32_t);
|
||
|
tmp_xfercfg.srcInc = 0;
|
||
|
tmp_xfercfg.dstInc = 0;
|
||
|
tmp_xfercfg.transferCount = 1;
|
||
|
/* Create chained descriptor to transmit last word */
|
||
|
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txDummy[instance].lastWord,
|
||
|
(void *)((uint32_t)&base->FIFOWR), NULL);
|
||
|
/* Use common API to setup first descriptor */
|
||
|
DMA_PrepareTransfer(
|
||
|
&xferConfig, &s_txDummy[instance].word, ((void *)((uint32_t)&base->FIFOWR)),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize - 2) : (xfer->dataSize - 1)),
|
||
|
kDMA_StaticToStatic, &s_spi_descriptor_table[instance]);
|
||
|
/* Disable interrupts for first descriptor to avoid calling callback twice */
|
||
|
xferConfig.xfercfg.intA = false;
|
||
|
xferConfig.xfercfg.intB = false;
|
||
|
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
|
||
|
if (result != kStatus_Success)
|
||
|
{
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DMA_PrepareTransfer(
|
||
|
&xferConfig, &s_txDummy[instance].word, ((void *)((uint32_t)&base->FIFOWR)),
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
|
||
|
xfer->dataSize, kDMA_StaticToStatic, NULL);
|
||
|
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
|
||
|
if (result != kStatus_Success)
|
||
|
{
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
handle->txInProgress = true;
|
||
|
tmp = 0;
|
||
|
XferToFifoWR(xfer, &tmp);
|
||
|
SpiConfigToFifoWR(spi_config_p, &tmp);
|
||
|
|
||
|
/* Setup the control info.
|
||
|
* Halfword writes to just the control bits (offset 0xE22) doesn't push anything into the FIFO.
|
||
|
* And the data access type of control bits must be uint16_t, byte writes or halfword writes to FIFOWR
|
||
|
* will push the data and the current control bits into the FIFO.
|
||
|
*/
|
||
|
if ((xfer->configFlags & kSPI_FrameAssert) &&
|
||
|
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize == 2U) : (xfer->dataSize == 1U)))
|
||
|
{
|
||
|
*(((uint16_t *)((uint32_t) & (base->FIFOWR))) + 1) = (uint16_t)(tmp >> 16U);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last. */
|
||
|
tmp &= (uint32_t)(~kSPI_FrameAssert);
|
||
|
*(((uint16_t *)((uint32_t) & (base->FIFOWR))) + 1) = (uint16_t)(tmp >> 16U);
|
||
|
}
|
||
|
|
||
|
DMA_StartTransfer(handle->txHandle);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)
|
||
|
{
|
||
|
assert(xfer);
|
||
|
assert(handle);
|
||
|
spi_transfer_t tempXfer = {0};
|
||
|
status_t status;
|
||
|
|
||
|
if (xfer->isTransmitFirst)
|
||
|
{
|
||
|
tempXfer.txData = xfer->txData;
|
||
|
tempXfer.rxData = NULL;
|
||
|
tempXfer.dataSize = xfer->txDataSize;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tempXfer.txData = NULL;
|
||
|
tempXfer.rxData = xfer->rxData;
|
||
|
tempXfer.dataSize = xfer->rxDataSize;
|
||
|
}
|
||
|
/* If the pcs pin keep assert between transmit and receive. */
|
||
|
if (xfer->isPcsAssertInTransfer)
|
||
|
{
|
||
|
tempXfer.configFlags = (xfer->configFlags) & (uint32_t)(~kSPI_FrameAssert);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tempXfer.configFlags = (xfer->configFlags) | kSPI_FrameAssert;
|
||
|
}
|
||
|
|
||
|
status = SPI_MasterTransferBlocking(base, &tempXfer);
|
||
|
if (status != kStatus_Success)
|
||
|
{
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
if (xfer->isTransmitFirst)
|
||
|
{
|
||
|
tempXfer.txData = NULL;
|
||
|
tempXfer.rxData = xfer->rxData;
|
||
|
tempXfer.dataSize = xfer->rxDataSize;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tempXfer.txData = xfer->txData;
|
||
|
tempXfer.rxData = NULL;
|
||
|
tempXfer.dataSize = xfer->txDataSize;
|
||
|
}
|
||
|
tempXfer.configFlags = xfer->configFlags;
|
||
|
|
||
|
status = SPI_MasterTransferDMA(base, handle, &tempXfer);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
|
||
|
{
|
||
|
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
|
||
|
spi_dma_handle_t *spiHandle = privHandle->handle;
|
||
|
SPI_Type *base = privHandle->base;
|
||
|
|
||
|
/* change the state */
|
||
|
spiHandle->rxInProgress = false;
|
||
|
|
||
|
/* All finished, call the callback */
|
||
|
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
|
||
|
{
|
||
|
spiHandle->state = kSPI_Idle;
|
||
|
if (spiHandle->callback)
|
||
|
{
|
||
|
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
|
||
|
{
|
||
|
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
|
||
|
spi_dma_handle_t *spiHandle = privHandle->handle;
|
||
|
SPI_Type *base = privHandle->base;
|
||
|
|
||
|
/* change the state */
|
||
|
spiHandle->txInProgress = false;
|
||
|
|
||
|
/* All finished, call the callback */
|
||
|
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
|
||
|
{
|
||
|
spiHandle->state = kSPI_Idle;
|
||
|
if (spiHandle->callback)
|
||
|
{
|
||
|
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
|
||
|
{
|
||
|
assert(NULL != handle);
|
||
|
|
||
|
/* Stop tx transfer first */
|
||
|
DMA_AbortTransfer(handle->txHandle);
|
||
|
/* Then rx transfer */
|
||
|
DMA_AbortTransfer(handle->rxHandle);
|
||
|
|
||
|
/* Set the handle state */
|
||
|
handle->txInProgress = false;
|
||
|
handle->rxInProgress = false;
|
||
|
handle->state = kSPI_Idle;
|
||
|
}
|
||
|
|
||
|
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
|
||
|
{
|
||
|
assert(handle);
|
||
|
|
||
|
if (!count)
|
||
|
{
|
||
|
return kStatus_InvalidArgument;
|
||
|
}
|
||
|
|
||
|
/* Catch when there is not an active transfer. */
|
||
|
if (handle->state != kSPI_Busy)
|
||
|
{
|
||
|
*count = 0;
|
||
|
return kStatus_NoTransferInProgress;
|
||
|
}
|
||
|
|
||
|
size_t bytes;
|
||
|
|
||
|
bytes = DMA_GetRemainingBytes(handle->rxHandle->base, handle->rxHandle->channel);
|
||
|
|
||
|
*count = handle->transferSize - bytes;
|
||
|
|
||
|
return kStatus_Success;
|
||
|
}
|