4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 12:07:23 +08:00

1098 lines
38 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
2019-06-12 15:01:12 +08:00
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_SAI_H_
#define _FSL_SAI_H_
#include "fsl_common.h"
/*!
* @addtogroup sai
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*@{*/
2019-06-12 15:01:12 +08:00
#define FSL_SAI_DRIVER_VERSION (MAKE_VERSION(2, 1, 7)) /*!< Version 2.1.7 */
/*@}*/
/*! @brief SAI return status*/
enum _sai_status_t
{
kStatus_SAI_TxBusy = MAKE_STATUS(kStatusGroup_SAI, 0), /*!< SAI Tx is busy. */
kStatus_SAI_RxBusy = MAKE_STATUS(kStatusGroup_SAI, 1), /*!< SAI Rx is busy. */
kStatus_SAI_TxError = MAKE_STATUS(kStatusGroup_SAI, 2), /*!< SAI Tx FIFO error. */
kStatus_SAI_RxError = MAKE_STATUS(kStatusGroup_SAI, 3), /*!< SAI Rx FIFO error. */
kStatus_SAI_QueueFull = MAKE_STATUS(kStatusGroup_SAI, 4), /*!< SAI transfer queue is full. */
kStatus_SAI_TxIdle = MAKE_STATUS(kStatusGroup_SAI, 5), /*!< SAI Tx is idle */
kStatus_SAI_RxIdle = MAKE_STATUS(kStatusGroup_SAI, 6) /*!< SAI Rx is idle */
};
2019-06-12 15:01:12 +08:00
/*< sai channel mask value, actual channel numbers is depend soc specific */
enum _sai_channel_mask
{
kSAI_Channel0Mask = 1 << 0U, /*!< channel 0 mask value */
kSAI_Channel1Mask = 1 << 1U, /*!< channel 1 mask value */
kSAI_Channel2Mask = 1 << 2U, /*!< channel 2 mask value */
kSAI_Channel3Mask = 1 << 3U, /*!< channel 3 mask value */
kSAI_Channel4Mask = 1 << 4U, /*!< channel 4 mask value */
kSAI_Channel5Mask = 1 << 5U, /*!< channel 5 mask value */
kSAI_Channel6Mask = 1 << 6U, /*!< channel 6 mask value */
kSAI_Channel7Mask = 1 << 7U, /*!< channel 7 mask value */
};
/*! @brief Define the SAI bus type */
typedef enum _sai_protocol
{
kSAI_BusLeftJustified = 0x0U, /*!< Uses left justified format.*/
kSAI_BusRightJustified, /*!< Uses right justified format. */
kSAI_BusI2S, /*!< Uses I2S format. */
kSAI_BusPCMA, /*!< Uses I2S PCM A format.*/
kSAI_BusPCMB /*!< Uses I2S PCM B format. */
} sai_protocol_t;
/*! @brief Master or slave mode */
typedef enum _sai_master_slave
{
kSAI_Master = 0x0U, /*!< Master mode */
kSAI_Slave = 0x1U /*!< Slave mode */
} sai_master_slave_t;
/*! @brief Mono or stereo audio format */
typedef enum _sai_mono_stereo
{
kSAI_Stereo = 0x0U, /*!< Stereo sound. */
kSAI_MonoRight, /*!< Only Right channel have sound. */
kSAI_MonoLeft /*!< Only left channel have sound. */
} sai_mono_stereo_t;
/*! @brief SAI data order, MSB or LSB */
typedef enum _sai_data_order
{
kSAI_DataLSB = 0x0U, /*!< LSB bit transferred first */
kSAI_DataMSB /*!< MSB bit transferred first */
} sai_data_order_t;
/*! @brief SAI clock polarity, active high or low */
typedef enum _sai_clock_polarity
{
kSAI_PolarityActiveHigh = 0x0U, /*!< Clock active high */
kSAI_PolarityActiveLow /*!< Clock active low */
} sai_clock_polarity_t;
/*! @brief Synchronous or asynchronous mode */
typedef enum _sai_sync_mode
{
kSAI_ModeAsync = 0x0U, /*!< Asynchronous mode */
kSAI_ModeSync, /*!< Synchronous mode (with receiver or transmit) */
kSAI_ModeSyncWithOtherTx, /*!< Synchronous with another SAI transmit */
kSAI_ModeSyncWithOtherRx /*!< Synchronous with another SAI receiver */
} sai_sync_mode_t;
2019-06-12 15:01:12 +08:00
#if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && (FSL_FEATURE_SAI_HAS_NO_MCR_MICS))
/*! @brief Mater clock source */
typedef enum _sai_mclk_source
{
kSAI_MclkSourceSysclk = 0x0U, /*!< Master clock from the system clock */
kSAI_MclkSourceSelect1, /*!< Master clock from source 1 */
kSAI_MclkSourceSelect2, /*!< Master clock from source 2 */
kSAI_MclkSourceSelect3 /*!< Master clock from source 3 */
} sai_mclk_source_t;
2019-06-12 15:01:12 +08:00
#endif
/*! @brief Bit clock source */
typedef enum _sai_bclk_source
{
kSAI_BclkSourceBusclk = 0x0U, /*!< Bit clock using bus clock */
2019-06-12 15:01:12 +08:00
/* General device bit source definition */
kSAI_BclkSourceMclkOption1 = 0x1U, /*!< Bit clock MCLK option 1 */
kSAI_BclkSourceMclkOption2 = 0x2U, /*!< Bit clock MCLK option2 */
kSAI_BclkSourceMclkOption3 = 0x3U, /*!< Bit clock MCLK option3 */
/* Kinetis device bit clock source definition */
kSAI_BclkSourceMclkDiv = 0x1U, /*!< Bit clock using master clock divider */
kSAI_BclkSourceOtherSai0 = 0x2U, /*!< Bit clock from other SAI device */
kSAI_BclkSourceOtherSai1 = 0x3U /*!< Bit clock from other SAI device */
} sai_bclk_source_t;
/*! @brief The SAI interrupt enable flag */
enum _sai_interrupt_enable_t
{
kSAI_WordStartInterruptEnable =
I2S_TCSR_WSIE_MASK, /*!< Word start flag, means the first word in a frame detected */
kSAI_SyncErrorInterruptEnable = I2S_TCSR_SEIE_MASK, /*!< Sync error flag, means the sync error is detected */
kSAI_FIFOWarningInterruptEnable = I2S_TCSR_FWIE_MASK, /*!< FIFO warning flag, means the FIFO is empty */
kSAI_FIFOErrorInterruptEnable = I2S_TCSR_FEIE_MASK, /*!< FIFO error flag */
#if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
kSAI_FIFORequestInterruptEnable = I2S_TCSR_FRIE_MASK, /*!< FIFO request, means reached watermark */
#endif /* FSL_FEATURE_SAI_FIFO_COUNT */
};
/*! @brief The DMA request sources */
enum _sai_dma_enable_t
{
kSAI_FIFOWarningDMAEnable = I2S_TCSR_FWDE_MASK, /*!< FIFO warning caused by the DMA request */
#if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
kSAI_FIFORequestDMAEnable = I2S_TCSR_FRDE_MASK, /*!< FIFO request caused by the DMA request */
#endif /* FSL_FEATURE_SAI_FIFO_COUNT */
};
/*! @brief The SAI status flag */
enum _sai_flags
{
kSAI_WordStartFlag = I2S_TCSR_WSF_MASK, /*!< Word start flag, means the first word in a frame detected */
kSAI_SyncErrorFlag = I2S_TCSR_SEF_MASK, /*!< Sync error flag, means the sync error is detected */
kSAI_FIFOErrorFlag = I2S_TCSR_FEF_MASK, /*!< FIFO error flag */
#if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
kSAI_FIFORequestFlag = I2S_TCSR_FRF_MASK, /*!< FIFO request flag. */
#endif /* FSL_FEATURE_SAI_FIFO_COUNT */
kSAI_FIFOWarningFlag = I2S_TCSR_FWF_MASK, /*!< FIFO warning flag */
};
/*! @brief The reset type */
typedef enum _sai_reset_type
{
kSAI_ResetTypeSoftware = I2S_TCSR_SR_MASK, /*!< Software reset, reset the logic state */
kSAI_ResetTypeFIFO = I2S_TCSR_FR_MASK, /*!< FIFO reset, reset the FIFO read and write pointer */
kSAI_ResetAll = I2S_TCSR_SR_MASK | I2S_TCSR_FR_MASK /*!< All reset. */
} sai_reset_type_t;
#if defined(FSL_FEATURE_SAI_HAS_FIFO_PACKING) && FSL_FEATURE_SAI_HAS_FIFO_PACKING
/*!
* @brief The SAI packing mode
* The mode includes 8 bit and 16 bit packing.
*/
typedef enum _sai_fifo_packing
{
kSAI_FifoPackingDisabled = 0x0U, /*!< Packing disabled */
kSAI_FifoPacking8bit = 0x2U, /*!< 8 bit packing enabled */
kSAI_FifoPacking16bit = 0x3U /*!< 16bit packing enabled */
} sai_fifo_packing_t;
#endif /* FSL_FEATURE_SAI_HAS_FIFO_PACKING */
/*! @brief SAI user configuration structure */
typedef struct _sai_config
{
sai_protocol_t protocol; /*!< Audio bus protocol in SAI */
sai_sync_mode_t syncMode; /*!< SAI sync mode, control Tx/Rx clock sync */
#if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
2019-06-12 15:01:12 +08:00
bool mclkOutputEnable; /*!< Master clock output enable, true means master clock divider enabled */
#if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && (FSL_FEATURE_SAI_HAS_NO_MCR_MICS))
sai_mclk_source_t mclkSource; /*!< Master Clock source */
#endif /* FSL_FEATURE_SAI_HAS_MCR */
#endif
sai_bclk_source_t bclkSource; /*!< Bit Clock source */
sai_master_slave_t masterSlave; /*!< Master or slave */
} sai_config_t;
/*!@brief SAI transfer queue size, user can refine it according to use case. */
#define SAI_XFER_QUEUE_SIZE (4)
/*! @brief Audio sample rate */
typedef enum _sai_sample_rate
{
kSAI_SampleRate8KHz = 8000U, /*!< Sample rate 8000 Hz */
kSAI_SampleRate11025Hz = 11025U, /*!< Sample rate 11025 Hz */
kSAI_SampleRate12KHz = 12000U, /*!< Sample rate 12000 Hz */
kSAI_SampleRate16KHz = 16000U, /*!< Sample rate 16000 Hz */
kSAI_SampleRate22050Hz = 22050U, /*!< Sample rate 22050 Hz */
kSAI_SampleRate24KHz = 24000U, /*!< Sample rate 24000 Hz */
kSAI_SampleRate32KHz = 32000U, /*!< Sample rate 32000 Hz */
kSAI_SampleRate44100Hz = 44100U, /*!< Sample rate 44100 Hz */
kSAI_SampleRate48KHz = 48000U, /*!< Sample rate 48000 Hz */
2019-06-12 15:01:12 +08:00
kSAI_SampleRate96KHz = 96000U, /*!< Sample rate 96000 Hz */
kSAI_SampleRate192KHz = 192000U, /*!< Sample rate 192000 Hz */
kSAI_SampleRate384KHz = 384000U, /*!< Sample rate 384000 Hz */
} sai_sample_rate_t;
/*! @brief Audio word width */
typedef enum _sai_word_width
{
kSAI_WordWidth8bits = 8U, /*!< Audio data width 8 bits */
kSAI_WordWidth16bits = 16U, /*!< Audio data width 16 bits */
kSAI_WordWidth24bits = 24U, /*!< Audio data width 24 bits */
kSAI_WordWidth32bits = 32U /*!< Audio data width 32 bits */
} sai_word_width_t;
/*! @brief sai transfer format */
typedef struct _sai_transfer_format
{
uint32_t sampleRate_Hz; /*!< Sample rate of audio data */
uint32_t bitWidth; /*!< Data length of audio data, usually 8/16/24/32 bits */
sai_mono_stereo_t stereo; /*!< Mono or stereo */
uint32_t masterClockHz; /*!< Master clock frequency in Hz */
#if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
2019-06-12 15:01:12 +08:00
uint8_t watermark; /*!< Watermark value */
#endif /* FSL_FEATURE_SAI_FIFO_COUNT */
/* for the multi channel usage, user can provide channelMask Oonly, then sai driver will handle
* other parameter carefully, such as
* channelMask = kSAI_Channel0Mask | kSAI_Channel1Mask | kSAI_Channel4Mask
* then in SAI_RxSetFormat/SAI_TxSetFormat function, channel/endChannel/channelNums will be calculated.
* for the single channel usage, user can provide channel or channel mask only, such as,
* channel = 0 or channelMask = kSAI_Channel0Mask.
*/
uint8_t channel; /*!< Transfer start channel */
uint8_t channelMask; /*!< enabled channel mask value, reference _sai_channel_mask */
uint8_t endChannel; /*!< end channel number */
uint8_t channelNums; /*!< Total enabled channel numbers */
sai_protocol_t protocol; /*!< Which audio protocol used */
bool isFrameSyncCompact; /*!< True means Frame sync length is configurable according to bitWidth, false means frame
sync length is 64 times of bit clock. */
} sai_transfer_format_t;
/*! @brief SAI transfer structure */
typedef struct _sai_transfer
{
uint8_t *data; /*!< Data start address to transfer. */
size_t dataSize; /*!< Transfer size. */
} sai_transfer_t;
typedef struct _sai_handle sai_handle_t;
/*! @brief SAI transfer callback prototype */
typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status, void *userData);
/*! @brief SAI handle structure */
struct _sai_handle
{
2019-06-12 15:01:12 +08:00
I2S_Type *base; /*!< base address */
uint32_t state; /*!< Transfer status */
sai_transfer_callback_t callback; /*!< Callback function called at transfer event*/
void *userData; /*!< Callback parameter passed to callback function*/
uint8_t bitWidth; /*!< Bit width for transfer, 8/16/24/32 bits */
/* for the multi channel usage, user can provide channelMask Oonly, then sai driver will handle
* other parameter carefully, such as
* channelMask = kSAI_Channel0Mask | kSAI_Channel1Mask | kSAI_Channel4Mask
* then in SAI_RxSetFormat/SAI_TxSetFormat function, channel/endChannel/channelNums will be calculated.
* for the single channel usage, user can provide channel or channel mask only, such as,
* channel = 0 or channelMask = kSAI_Channel0Mask.
*/
uint8_t channel; /*!< Transfer start channel */
uint8_t channelMask; /*!< enabled channel mask value, refernece _sai_channel_mask */
uint8_t endChannel; /*!< end channel number */
uint8_t channelNums; /*!< Total enabled channel numbers */
sai_transfer_t saiQueue[SAI_XFER_QUEUE_SIZE]; /*!< Transfer queue storing queued transfer */
size_t transferSize[SAI_XFER_QUEUE_SIZE]; /*!< Data bytes need to transfer */
volatile uint8_t queueUser; /*!< Index for user to queue transfer */
volatile uint8_t queueDriver; /*!< Index for driver to get the transfer data and size */
#if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
uint8_t watermark; /*!< Watermark value */
#endif
};
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /*_cplusplus*/
/*!
* @name Initialization and deinitialization
* @{
*/
/*!
* @brief Initializes the SAI Tx peripheral.
*
* Ungates the SAI clock, resets the module, and configures SAI Tx with a configuration structure.
* The configuration structure can be custom filled or set with default values by
* SAI_TxGetDefaultConfig().
*
* @note This API should be called at the beginning of the application to use
* the SAI driver. Otherwise, accessing the SAIM module can cause a hard fault
* because the clock is not enabled.
*
* @param base SAI base pointer
* @param config SAI configuration structure.
*/
void SAI_TxInit(I2S_Type *base, const sai_config_t *config);
/*!
* @brief Initializes the SAI Rx peripheral.
*
* Ungates the SAI clock, resets the module, and configures the SAI Rx with a configuration structure.
* The configuration structure can be custom filled or set with default values by
* SAI_RxGetDefaultConfig().
*
* @note This API should be called at the beginning of the application to use
* the SAI driver. Otherwise, accessing the SAI module can cause a hard fault
* because the clock is not enabled.
*
* @param base SAI base pointer
* @param config SAI configuration structure.
*/
void SAI_RxInit(I2S_Type *base, const sai_config_t *config);
/*!
* @brief Sets the SAI Tx configuration structure to default values.
*
* This API initializes the configuration structure for use in SAI_TxConfig().
* The initialized structure can remain unchanged in SAI_TxConfig(), or it can be modified
* before calling SAI_TxConfig().
* This is an example.
@code
sai_config_t config;
SAI_TxGetDefaultConfig(&config);
@endcode
*
* @param config pointer to master configuration structure
*/
void SAI_TxGetDefaultConfig(sai_config_t *config);
/*!
* @brief Sets the SAI Rx configuration structure to default values.
*
* This API initializes the configuration structure for use in SAI_RxConfig().
* The initialized structure can remain unchanged in SAI_RxConfig() or it can be modified
* before calling SAI_RxConfig().
* This is an example.
@code
sai_config_t config;
SAI_RxGetDefaultConfig(&config);
@endcode
*
* @param config pointer to master configuration structure
*/
void SAI_RxGetDefaultConfig(sai_config_t *config);
/*!
* @brief De-initializes the SAI peripheral.
*
* This API gates the SAI clock. The SAI module can't operate unless SAI_TxInit
* or SAI_RxInit is called to enable the clock.
*
* @param base SAI base pointer
*/
void SAI_Deinit(I2S_Type *base);
/*!
* @brief Resets the SAI Tx.
*
* This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset bit.
*
* @param base SAI base pointer
*/
void SAI_TxReset(I2S_Type *base);
/*!
* @brief Resets the SAI Rx.
*
* This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset bit.
*
* @param base SAI base pointer
*/
void SAI_RxReset(I2S_Type *base);
/*!
* @brief Enables/disables the SAI Tx.
*
* @param base SAI base pointer
* @param enable True means enable SAI Tx, false means disable.
*/
void SAI_TxEnable(I2S_Type *base, bool enable);
/*!
* @brief Enables/disables the SAI Rx.
*
* @param base SAI base pointer
* @param enable True means enable SAI Rx, false means disable.
*/
void SAI_RxEnable(I2S_Type *base, bool enable);
/*! @} */
/*!
* @name Status
* @{
*/
/*!
* @brief Gets the SAI Tx status flag state.
*
* @param base SAI base pointer
* @return SAI Tx status flag value. Use the Status Mask to get the status value needed.
*/
static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base)
{
return base->TCSR;
}
/*!
* @brief Clears the SAI Tx status flag state.
*
* @param base SAI base pointer
* @param mask State mask. It can be a combination of the following source if defined:
* @arg kSAI_WordStartFlag
* @arg kSAI_SyncErrorFlag
* @arg kSAI_FIFOErrorFlag
*/
static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask)
{
base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask);
}
/*!
* @brief Gets the SAI Tx status flag state.
*
* @param base SAI base pointer
* @return SAI Rx status flag value. Use the Status Mask to get the status value needed.
*/
static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base)
{
return base->RCSR;
}
/*!
* @brief Clears the SAI Rx status flag state.
*
* @param base SAI base pointer
* @param mask State mask. It can be a combination of the following sources if defined.
* @arg kSAI_WordStartFlag
* @arg kSAI_SyncErrorFlag
* @arg kSAI_FIFOErrorFlag
*/
static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask)
{
base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask);
}
/*!
* @brief Do software reset or FIFO reset .
*
* FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0.
* Software reset means claer the Tx internal logic, including the bit clock, frame count etc. But software
* reset will not clear any configuration registers like TCR1~TCR5.
* This function will also clear all the error flags such as FIFO error, sync error etc.
*
* @param base SAI base pointer
* @param type Reset type, FIFO reset or software reset
*/
void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t type);
/*!
* @brief Do software reset or FIFO reset .
*
* FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0.
* Software reset means claer the Rx internal logic, including the bit clock, frame count etc. But software
* reset will not clear any configuration registers like RCR1~RCR5.
* This function will also clear all the error flags such as FIFO error, sync error etc.
*
* @param base SAI base pointer
* @param type Reset type, FIFO reset or software reset
*/
void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t type);
/*!
* @brief Set the Tx channel FIFO enable mask.
*
* @param base SAI base pointer
* @param mask Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled,
* 3 means both channel 0 and channel 1 enabled.
*/
void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask);
/*!
* @brief Set the Rx channel FIFO enable mask.
*
* @param base SAI base pointer
* @param mask Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled,
* 3 means both channel 0 and channel 1 enabled.
*/
void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask);
/*!
* @brief Set the Tx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order);
/*!
* @brief Set the Rx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order);
/*!
* @brief Set the Tx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity);
/*!
* @brief Set the Rx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity);
/*!
* @brief Set the Tx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity);
/*!
* @brief Set the Rx data order.
*
* @param base SAI base pointer
* @param order Data order MSB or LSB
*/
void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity);
#if defined(FSL_FEATURE_SAI_HAS_FIFO_PACKING) && FSL_FEATURE_SAI_HAS_FIFO_PACKING
/*!
* @brief Set Tx FIFO packing feature.
*
* @param base SAI base pointer.
* @param pack FIFO pack type. It is element of sai_fifo_packing_t.
*/
void SAI_TxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack);
/*!
* @brief Set Rx FIFO packing feature.
*
* @param base SAI base pointer.
* @param pack FIFO pack type. It is element of sai_fifo_packing_t.
*/
void SAI_RxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack);
#endif /* FSL_FEATURE_SAI_HAS_FIFO_PACKING */
#if defined(FSL_FEATURE_SAI_HAS_FIFO_FUNCTION_AFTER_ERROR) && FSL_FEATURE_SAI_HAS_FIFO_FUNCTION_AFTER_ERROR
/*!
* @brief Set Tx FIFO error continue.
*
* FIFO error continue mode means SAI will keep running while FIFO error occured. If this feature
* not enabled, SAI will hang and users need to clear FEF flag in TCSR register.
*
* @param base SAI base pointer.
* @param isEnabled Is FIFO error continue enabled, true means enable, false means disable.
*/
static inline void SAI_TxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
{
if (isEnabled)
{
base->TCR4 |= I2S_TCR4_FCONT_MASK;
}
else
{
base->TCR4 &= ~I2S_TCR4_FCONT_MASK;
}
}
/*!
* @brief Set Rx FIFO error continue.
*
* FIFO error continue mode means SAI will keep running while FIFO error occured. If this feature
* not enabled, SAI will hang and users need to clear FEF flag in RCSR register.
*
* @param base SAI base pointer.
* @param isEnabled Is FIFO error continue enabled, true means enable, false means disable.
*/
static inline void SAI_RxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
{
if (isEnabled)
{
base->RCR4 |= I2S_RCR4_FCONT_MASK;
}
else
{
base->RCR4 &= ~I2S_RCR4_FCONT_MASK;
}
}
#endif
/*! @} */
/*!
* @name Interrupts
* @{
*/
/*!
* @brief Enables the SAI Tx interrupt requests.
*
* @param base SAI base pointer
* @param mask interrupt source
* The parameter can be a combination of the following sources if defined.
* @arg kSAI_WordStartInterruptEnable
* @arg kSAI_SyncErrorInterruptEnable
* @arg kSAI_FIFOWarningInterruptEnable
* @arg kSAI_FIFORequestInterruptEnable
* @arg kSAI_FIFOErrorInterruptEnable
*/
static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask)
{
base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask);
}
/*!
* @brief Enables the SAI Rx interrupt requests.
*
* @param base SAI base pointer
* @param mask interrupt source
* The parameter can be a combination of the following sources if defined.
* @arg kSAI_WordStartInterruptEnable
* @arg kSAI_SyncErrorInterruptEnable
* @arg kSAI_FIFOWarningInterruptEnable
* @arg kSAI_FIFORequestInterruptEnable
* @arg kSAI_FIFOErrorInterruptEnable
*/
static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask)
{
base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask);
}
/*!
* @brief Disables the SAI Tx interrupt requests.
*
* @param base SAI base pointer
* @param mask interrupt source
* The parameter can be a combination of the following sources if defined.
* @arg kSAI_WordStartInterruptEnable
* @arg kSAI_SyncErrorInterruptEnable
* @arg kSAI_FIFOWarningInterruptEnable
* @arg kSAI_FIFORequestInterruptEnable
* @arg kSAI_FIFOErrorInterruptEnable
*/
static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)
{
base->TCSR = ((base->TCSR & 0xFFE3FFFFU) & (~mask));
}
/*!
* @brief Disables the SAI Rx interrupt requests.
*
* @param base SAI base pointer
* @param mask interrupt source
* The parameter can be a combination of the following sources if defined.
* @arg kSAI_WordStartInterruptEnable
* @arg kSAI_SyncErrorInterruptEnable
* @arg kSAI_FIFOWarningInterruptEnable
* @arg kSAI_FIFORequestInterruptEnable
* @arg kSAI_FIFOErrorInterruptEnable
*/
static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)
{
base->RCSR = ((base->RCSR & 0xFFE3FFFFU) & (~mask));
}
/*! @} */
/*!
* @name DMA Control
* @{
*/
/*!
* @brief Enables/disables the SAI Tx DMA requests.
* @param base SAI base pointer
* @param mask DMA source
* The parameter can be combination of the following sources if defined.
* @arg kSAI_FIFOWarningDMAEnable
* @arg kSAI_FIFORequestDMAEnable
* @param enable True means enable DMA, false means disable DMA.
*/
static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
{
if (enable)
{
base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask);
}
else
{
base->TCSR = ((base->TCSR & 0xFFE3FFFFU) & (~mask));
}
}
/*!
* @brief Enables/disables the SAI Rx DMA requests.
* @param base SAI base pointer
* @param mask DMA source
* The parameter can be a combination of the following sources if defined.
* @arg kSAI_FIFOWarningDMAEnable
* @arg kSAI_FIFORequestDMAEnable
* @param enable True means enable DMA, false means disable DMA.
*/
static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
{
if (enable)
{
base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask);
}
else
{
base->RCSR = ((base->RCSR & 0xFFE3FFFFU) & (~mask));
}
}
/*!
* @brief Gets the SAI Tx data register address.
*
* This API is used to provide a transfer address for the SAI DMA transfer configuration.
*
* @param base SAI base pointer.
* @param channel Which data channel used.
* @return data register address.
*/
static inline uint32_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
{
return (uint32_t)(&(base->TDR)[channel]);
}
/*!
* @brief Gets the SAI Rx data register address.
*
* This API is used to provide a transfer address for the SAI DMA transfer configuration.
*
* @param base SAI base pointer.
* @param channel Which data channel used.
* @return data register address.
*/
static inline uint32_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
{
return (uint32_t)(&(base->RDR)[channel]);
}
/*! @} */
/*!
* @name Bus Operations
* @{
*/
/*!
* @brief Configures the SAI Tx audio format.
*
* The audio format can be changed at run-time. This function configures the sample rate and audio data
* format to be transferred.
*
* @param base SAI base pointer.
* @param format Pointer to the SAI audio data format structure.
* @param mclkSourceClockHz SAI master clock source frequency in Hz.
* @param bclkSourceClockHz SAI bit clock source frequency in Hz. If the bit clock source is a master
* clock, this value should equal the masterClockHz.
*/
void SAI_TxSetFormat(I2S_Type *base,
sai_transfer_format_t *format,
uint32_t mclkSourceClockHz,
uint32_t bclkSourceClockHz);
/*!
* @brief Configures the SAI Rx audio format.
*
* The audio format can be changed at run-time. This function configures the sample rate and audio data
* format to be transferred.
*
* @param base SAI base pointer.
* @param format Pointer to the SAI audio data format structure.
* @param mclkSourceClockHz SAI master clock source frequency in Hz.
* @param bclkSourceClockHz SAI bit clock source frequency in Hz. If the bit clock source is a master
* clock, this value should equal the masterClockHz.
*/
void SAI_RxSetFormat(I2S_Type *base,
sai_transfer_format_t *format,
uint32_t mclkSourceClockHz,
uint32_t bclkSourceClockHz);
/*!
* @brief Sends data using a blocking method.
*
* @note This function blocks by polling until data is ready to be sent.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits.
* @param buffer Pointer to the data to be written.
* @param size Bytes to be written.
*/
void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
2019-06-12 15:01:12 +08:00
/*!
* @brief Sends data to multi channel using a blocking method.
*
* @note This function blocks by polling until data is ready to be sent.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @param channelMask channel mask.
* @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits.
* @param buffer Pointer to the data to be written.
* @param size Bytes to be written.
*/
void SAI_WriteMultiChannelBlocking(
I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
/*!
* @brief Writes data into SAI FIFO.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @param data Data needs to be written.
*/
static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)
{
base->TDR[channel] = data;
}
/*!
* @brief Receives data using a blocking method.
*
* @note This function blocks by polling until data is ready to be sent.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits.
* @param buffer Pointer to the data to be read.
* @param size Bytes to be read.
*/
void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
2019-06-12 15:01:12 +08:00
/*!
* @brief Receives multi channel data using a blocking method.
*
* @note This function blocks by polling until data is ready to be sent.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @param channelMask channel mask.
* @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits.
* @param buffer Pointer to the data to be read.
* @param size Bytes to be read.
*/
void SAI_ReadMultiChannelBlocking(
I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
/*!
* @brief Reads data from the SAI FIFO.
*
* @param base SAI base pointer.
* @param channel Data channel used.
* @return Data in SAI FIFO.
*/
static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel)
{
return base->RDR[channel];
}
/*! @} */
/*!
* @name Transactional
* @{
*/
/*!
* @brief Initializes the SAI Tx handle.
*
* This function initializes the Tx handle for the SAI Tx transactional APIs. Call
* this function once to get the handle initialized.
*
* @param base SAI base pointer
* @param handle SAI handle pointer.
* @param callback Pointer to the user callback function.
* @param userData User parameter passed to the callback function
*/
void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData);
/*!
* @brief Initializes the SAI Rx handle.
*
* This function initializes the Rx handle for the SAI Rx transactional APIs. Call
* this function once to get the handle initialized.
*
* @param base SAI base pointer.
* @param handle SAI handle pointer.
* @param callback Pointer to the user callback function.
* @param userData User parameter passed to the callback function.
*/
void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData);
/*!
* @brief Configures the SAI Tx audio format.
*
* The audio format can be changed at run-time. This function configures the sample rate and audio data
* format to be transferred.
*
* @param base SAI base pointer.
* @param handle SAI handle pointer.
* @param format Pointer to the SAI audio data format structure.
* @param mclkSourceClockHz SAI master clock source frequency in Hz.
* @param bclkSourceClockHz SAI bit clock source frequency in Hz. If a bit clock source is a master
* clock, this value should equal the masterClockHz in format.
* @return Status of this function. Return value is the status_t.
*/
status_t SAI_TransferTxSetFormat(I2S_Type *base,
sai_handle_t *handle,
sai_transfer_format_t *format,
uint32_t mclkSourceClockHz,
uint32_t bclkSourceClockHz);
/*!
* @brief Configures the SAI Rx audio format.
*
* The audio format can be changed at run-time. This function configures the sample rate and audio data
* format to be transferred.
*
* @param base SAI base pointer.
* @param handle SAI handle pointer.
* @param format Pointer to the SAI audio data format structure.
* @param mclkSourceClockHz SAI master clock source frequency in Hz.
* @param bclkSourceClockHz SAI bit clock source frequency in Hz. If a bit clock source is a master
* clock, this value should equal the masterClockHz in format.
* @return Status of this function. Return value is one of status_t.
*/
status_t SAI_TransferRxSetFormat(I2S_Type *base,
sai_handle_t *handle,
sai_transfer_format_t *format,
uint32_t mclkSourceClockHz,
uint32_t bclkSourceClockHz);
/*!
* @brief Performs an interrupt non-blocking send transfer on SAI.
*
* @note This API returns immediately after the transfer initiates.
* Call the SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether
* the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer
* is finished.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
* @param xfer Pointer to the sai_transfer_t structure.
* @retval kStatus_Success Successfully started the data receive.
* @retval kStatus_SAI_TxBusy Previous receive still not finished.
* @retval kStatus_InvalidArgument The input parameter is invalid.
*/
status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer);
/*!
* @brief Performs an interrupt non-blocking receive transfer on SAI.
*
* @note This API returns immediately after the transfer initiates.
* Call the SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether
* the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer
* is finished.
*
* @param base SAI base pointer
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
* @param xfer Pointer to the sai_transfer_t structure.
* @retval kStatus_Success Successfully started the data receive.
* @retval kStatus_SAI_RxBusy Previous receive still not finished.
* @retval kStatus_InvalidArgument The input parameter is invalid.
*/
status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer);
/*!
* @brief Gets a set byte count.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
* @param count Bytes count sent.
* @retval kStatus_Success Succeed get the transfer count.
* @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count);
/*!
* @brief Gets a received byte count.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
* @param count Bytes count received.
* @retval kStatus_Success Succeed get the transfer count.
* @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count);
/*!
* @brief Aborts the current send.
*
* @note This API can be called any time when an interrupt non-blocking transfer initiates
* to abort the transfer early.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
*/
void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle);
/*!
* @brief Aborts the current IRQ receive.
*
* @note This API can be called when an interrupt non-blocking transfer initiates
* to abort the transfer early.
*
* @param base SAI base pointer
* @param handle Pointer to the sai_handle_t structure which stores the transfer state.
*/
void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle);
/*!
* @brief Terminate all SAI send.
*
* This function will clear all transfer slots buffered in the sai queue. If users only want to abort the
* current transfer slot, please call SAI_TransferAbortSend.
*
* @param base SAI base pointer.
* @param handle SAI eDMA handle pointer.
*/
void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle);
/*!
* @brief Terminate all SAI receive.
*
* This function will clear all transfer slots buffered in the sai queue. If users only want to abort the
* current transfer slot, please call SAI_TransferAbortReceive.
*
* @param base SAI base pointer.
* @param handle SAI eDMA handle pointer.
*/
void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle);
/*!
* @brief Tx interrupt handler.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure.
*/
void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle);
/*!
* @brief Tx interrupt handler.
*
* @param base SAI base pointer.
* @param handle Pointer to the sai_handle_t structure.
*/
void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle);
/*! @} */
#if defined(__cplusplus)
}
#endif /*_cplusplus*/
/*! @} */
#endif /* _FSL_SAI_H_ */