4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 16:57:22 +08:00

970 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (c) 2021 hpmicro
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_lcdc_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "hpm_debug_console.h"
#include "hpm_dram_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "assert.h"
#include "hpm_clock_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_sdxc_drv.h"
#include "hpm_sdxc_soc_drv.h"
#include "hpm_pllctl_drv.h"
static board_timer_cb timer_cb;
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
#endif
void board_init_console(void)
{
#if BOARD_CONSOLE_TYPE == console_type_uart
console_config_t cfg;
/* Configure the UART clock to 24MHz */
clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
init_uart_pins((UART_Type *) cfg.base);
console_init(&cfg);
#else
while(1);
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
printf("dram:\t\t %luHz\n", clock_get_frequency(clock_dram));
printf("display:\t %luHz\n", clock_get_frequency(clock_display));
printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
init_uart_pins(ptr);
}
void board_init_ahb(void)
{
clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
}
void board_print_banner(void)
{
const uint8_t banner[] = {"\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n"};
printf("%s", banner);
}
static void board_turnoff_rgb_led(void)
{
uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
}
void board_init(void)
{
board_turnoff_rgb_led();
board_init_clock();
board_init_console();
board_init_pmp();
board_init_ahb();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_init_sdram_pins(void)
{
init_sdram_pins();
}
uint32_t board_init_dram_clock(void)
{
clock_set_source_divider(clock_dram, clk_src_pll2_clk0, 2U); /* 166Mhz */
return clock_get_frequency(clock_dram);
}
void board_power_cycle_lcd(void)
{
/* turn off backlight */
gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
board_delay_ms(150);
/* power recycle */
gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 0);
board_delay_ms(20);
gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 1);
board_delay_ms(150);
/* turn on backlight */
gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
}
void board_init_lcd(void)
{
board_init_lcd_clock();
init_lcd_pins(BOARD_LCD_BASE);
board_power_cycle_lcd();
board_delay_ms(10);
board_power_cycle_lcd();
}
void board_delay_ms(uint32_t ms)
{
clock_cpu_delay_ms(ms);
}
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_create(uint32_t ms, void *cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = (board_timer_cb)cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
void board_i2c_bus_clear(I2C_Type *ptr)
{
init_i2c_pins_as_gpio(ptr);
if (ptr == BOARD_CAP_I2C_BASE) {
gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
printf("CLK is low, please power cycle the board\n");
while (1) {}
}
if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
printf("SDA is low, try to issue I2C bus clear\n");
} else {
printf("I2C bus is ready\n");
return;
}
gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
for (uint8_t i = 0; i < 3; i++) {
for (uint32_t j = 0; j < 9; j++) {
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
board_delay_ms(10);
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
board_delay_ms(10);
}
board_delay_ms(100);
}
printf("I2C bus is cleared\n");
}
}
void board_init_i2c(I2C_Type *ptr)
{
hpm_stat_t stat;
uint32_t freq;
i2c_config_t config;
board_i2c_bus_clear(ptr);
init_i2c_pins(ptr);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
/* Configure the I2C clock to 24MHz */
clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
config.i2c_mode = i2c_mode_normal;
config.is_10bit_addressing = false;
freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
if (stat != status_success) {
printf("failed to initialize i2c 0x%lx\n", BOARD_CAP_I2C_BASE);
while (1) {}
}
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_UART0) {
clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart0);
}
else if (ptr == HPM_UART1) {
clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart1);
}
else if (ptr == HPM_UART2) {
clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart2);
}
else if (ptr == HPM_UART3) {
clock_set_source_divider(clock_uart3, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart3);
}
else if (ptr == HPM_UART4) {
clock_set_source_divider(clock_uart4, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart4);
}
else if (ptr == HPM_UART5) {
clock_set_source_divider(clock_uart5, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart5);
}
else if (ptr == HPM_UART6) {
clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart6);
}
else if (ptr == HPM_UART7) {
clock_set_source_divider(clock_uart7, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart7);
}
else if (ptr == HPM_UART8) {
clock_set_source_divider(clock_uart8, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart8);
}
else if (ptr == HPM_UART9) {
clock_set_source_divider(clock_uart9, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart9);
}
else if (ptr == HPM_UART10) {
clock_set_source_divider(clock_uart10, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart10);
}
else if (ptr == HPM_UART11) {
clock_set_source_divider(clock_uart11, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart11);
}
else if (ptr == HPM_UART12) {
clock_set_source_divider(clock_uart12, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart12);
}
else if (ptr == HPM_UART13) {
clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart13);
}
else if (ptr == HPM_UART14) {
clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart14);
}
else if (ptr == HPM_UART15) {
clock_set_source_divider(clock_uart15, clk_src_osc24m, 1);
freq = clock_get_frequency(clock_uart15);
}
else {
/* Unsupported instance */
}
return freq;
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_SPI0) {
/* SPI0 clock configure */
clock_add_to_group(clock_spi0, 0);
clock_set_source_divider(clock_spi0, clk_src_pll1_clk1, 5U);
freq = clock_get_frequency(clock_spi0);
}
else if (ptr == HPM_SPI1) {
/* SPI1 clock configure */
clock_add_to_group(clock_spi1, 0);
clock_set_source_divider(clock_spi1, clk_src_pll1_clk1, 5U);
freq = clock_get_frequency(clock_spi1);
}
else if (ptr == HPM_SPI2) {
/* SPI2 clock configure */
clock_add_to_group(clock_spi2, 0);
clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U);
freq = clock_get_frequency(clock_spi2);
}
else if (ptr == HPM_SPI3) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi3, 0);
clock_set_source_divider(clock_spi3, clk_src_pll1_clk1, 5U);
freq = clock_get_frequency(clock_spi3);
}
else {
/* Invalid instance */
}
return freq;
}
void board_init_cap_touch(void)
{
init_cap_pins();
gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
board_delay_ms(10);
gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
board_init_i2c(BOARD_CAP_I2C_BASE);
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_led_pins(void)
{
init_led_pins_as_gpio();
gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
}
void board_led_toggle(void)
{
static uint8_t i;
gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
i++;
i = i % 3;
}
void board_led_write(bool state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state ? BOARD_LED_ON_LEVEL : BOARD_LED_OFF_LEVEL);
}
void board_init_cam_pins(void)
{
init_cam_pins(HPM_CAM0);
}
void board_init_usb_pins(void)
{
/* set pull-up for USBx OC pins */
init_usb_pins(HPM_USB0);
/* configure USBx OC Flag pins as input function */
gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
}
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
{
}
void board_init_pmp(void)
{
extern uint32_t __noncacheable_start__[];
extern uint32_t __noncacheable_end__[];
uint32_t start_addr = (uint32_t) __noncacheable_start__;
uint32_t end_addr = (uint32_t) __noncacheable_end__;
uint32_t length = end_addr - start_addr;
if (length == 0) {
return;
}
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry_t pmp_entry[1];
pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
hpm_core_clock = cpu0_freq;
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
HPM_PLLCTL->XTAL = PLLCTL_XTAL_RAMP_TIME_SET(32UL * 1000UL * 9U);
/* Select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
}
/* Add most Clocks to group 0 */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_axi0, 0);
clock_add_to_group(clock_axi1, 0);
clock_add_to_group(clock_axi2, 0);
clock_add_to_group(clock_ahb, 0);
clock_add_to_group(clock_dram, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_xpi1, 0);
clock_add_to_group(clock_gptmr0, 0);
clock_add_to_group(clock_gptmr1, 0);
clock_add_to_group(clock_gptmr2, 0);
clock_add_to_group(clock_gptmr3, 0);
clock_add_to_group(clock_gptmr4, 0);
clock_add_to_group(clock_gptmr5, 0);
clock_add_to_group(clock_gptmr6, 0);
clock_add_to_group(clock_gptmr7, 0);
clock_add_to_group(clock_uart0, 0);
clock_add_to_group(clock_uart1, 0);
clock_add_to_group(clock_uart2, 0);
clock_add_to_group(clock_uart3, 0);
clock_add_to_group(clock_uart6, 0);
clock_add_to_group(clock_uart13, 0);
clock_add_to_group(clock_uart14, 0);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
clock_add_to_group(clock_spi0, 0);
clock_add_to_group(clock_spi1, 0);
clock_add_to_group(clock_spi2, 0);
clock_add_to_group(clock_spi3, 0);
clock_add_to_group(clock_can0, 0);
clock_add_to_group(clock_can1, 0);
clock_add_to_group(clock_can2, 0);
clock_add_to_group(clock_can3, 0);
clock_add_to_group(clock_display, 0);
clock_add_to_group(clock_sdxc0, 0);
clock_add_to_group(clock_sdxc1, 0);
clock_add_to_group(clock_camera0, 0);
clock_add_to_group(clock_camera1, 0);
clock_add_to_group(clock_ptpc, 0);
clock_add_to_group(clock_ref0, 0);
clock_add_to_group(clock_ref1, 0);
clock_add_to_group(clock_watchdog0, 0);
clock_add_to_group(clock_eth0, 0);
clock_add_to_group(clock_eth1, 0);
clock_add_to_group(clock_sdp, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_ram0, 0);
clock_add_to_group(clock_ram1, 0);
clock_add_to_group(clock_usb0, 0);
clock_add_to_group(clock_usb1, 0);
clock_add_to_group(clock_jpeg, 0);
clock_add_to_group(clock_pdma, 0);
clock_add_to_group(clock_kman, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_mbx0, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_rng, 0);
clock_add_to_group(clock_mot0, 0);
clock_add_to_group(clock_mot1, 0);
clock_add_to_group(clock_mot2, 0);
clock_add_to_group(clock_mot3, 0);
clock_add_to_group(clock_acmp, 0);
clock_add_to_group(clock_dao, 0);
clock_add_to_group(clock_msyn, 0);
clock_add_to_group(clock_lmm0, 0);
clock_add_to_group(clock_lmm1, 0);
clock_add_to_group(clock_adc0, 0);
clock_add_to_group(clock_adc1, 0);
clock_add_to_group(clock_adc2, 0);
clock_add_to_group(clock_adc3, 0);
clock_add_to_group(clock_i2s0, 0);
clock_add_to_group(clock_i2s1, 0);
clock_add_to_group(clock_i2s2, 0);
clock_add_to_group(clock_i2s3, 0);
/* Add the CPU1 clock to Group1 */
clock_add_to_group(clock_mchtmr1, 1);
clock_add_to_group(clock_mbx1, 1);
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
while(1);
}
clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
/* Connect Group1 to CPU1 */
clock_connect_group_to_cpu(1, 1);
}
uint32_t board_init_cam_clock(CAM_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_CAM0) {
/* Configure camera clock to 24MHz */
clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_camera0);
} else if (ptr == HPM_CAM1) {
/* Configure camera clock to 24MHz */
clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
freq = clock_get_frequency(clock_camera1);
} else {
/* Invalid camera instance */
}
return freq;
}
uint32_t board_init_lcd_clock(void)
{
uint32_t freq;
clock_add_to_group(clock_display, 0);
/* Configure LCDC clock to 29.7MHz */
clock_set_source_divider(clock_display, clock_source_pll4_clk0, 20U);
freq = clock_get_frequency(clock_display);
return freq;
}
uint32_t board_init_adc12_clock(ADC12_Type *ptr)
{
uint32_t freq = 0;
switch ((uint32_t) ptr) {
case HPM_ADC0_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc0);
break;
case HPM_ADC1_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc1);
break;
case HPM_ADC2_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc2);
break;
default:
/* Invalid ADC instance */
break;
}
return freq;
}
uint32_t board_init_dao_clock(void)
{
clock_add_to_group(clock_dao, 0);
sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
return clock_get_frequency(clock_dao);
}
uint32_t board_init_pdm_clock(void)
{
clock_add_to_group(clock_pdm, 0);
sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
return clock_get_frequency(clock_pdm);
}
uint32_t board_init_i2s_clock(I2S_Type *ptr)
{
if (ptr == HPM_I2S0) {
clock_add_to_group(clock_i2s0, 0);
sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
return clock_get_frequency(clock_i2s0);
} else {
return 0;
}
}
uint32_t board_init_adc16_clock(ADC16_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_ADC3) {
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc3);
}
return freq;
}
void board_init_can(CAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(CAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_CAN0) {
/* Set the CAN0 peripheral clock to 80MHz */
clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_CAN1) {
/* Set the CAN1 peripheral clock to 80MHz */
clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
freq = clock_get_frequency(clock_can1);
} else if (ptr == HPM_CAN2) {
/* Set the CAN2 peripheral clock to 80MHz */
clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
freq = clock_get_frequency(clock_can2);
} else if (ptr == HPM_CAN3) {
/* Set the CAN3 peripheral clock to 80MHz */
clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
freq = clock_get_frequency(clock_can3);
} else {
/* Invalid CAN instance */
}
return freq;
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, 0);
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr0);
}
else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, 0);
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr1);
}
else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, 0);
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr2);
}
else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, 0);
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr3);
}
else if (ptr == HPM_GPTMR4) {
clock_add_to_group(clock_gptmr4, 0);
clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr4);
}
else if (ptr == HPM_GPTMR5) {
clock_add_to_group(clock_gptmr5, 0);
clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr5);
}
else if (ptr == HPM_GPTMR6) {
clock_add_to_group(clock_gptmr6, 0);
clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr6);
}
else if (ptr == HPM_GPTMR7) {
clock_add_to_group(clock_gptmr7, 0);
clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr7);
}
else {
/* Invalid instance */
}
}
/*
* this function will be called during startup to initialize external memory for data use
*/
void _init_ext_ram(void)
{
uint32_t dram_clk_in_hz;
board_init_sdram_pins();
dram_clk_in_hz = board_init_dram_clock();
dram_config_t config = {0};
dram_sdram_config_t sdram_config = {0};
dram_default_config(HPM_DRAM, &config);
config.dqs = DRAM_DQS_INTERNAL;
dram_init(HPM_DRAM, &config);
sdram_config.bank_num = DRAM_SDRAM_BANK_NUM_4;
sdram_config.prescaler = 0x3;
sdram_config.burst_len_in_byte = 8;
sdram_config.auto_refresh_count_in_one_burst = 1;
sdram_config.col_addr_bits = DRAM_SDRAM_COLUMN_ADDR_9_BITS;
sdram_config.cas_latency = DRAM_SDRAM_CAS_LATENCY_3;
sdram_config.precharge_to_act_in_ns = 18; /* Trp */
sdram_config.act_to_rw_in_ns = 18; /* Trcd */
sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
sdram_config.cke_off_in_ns = 42; /* Trcd */
sdram_config.act_to_precharge_in_ns = 42; /* Tras */
sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
sdram_config.act_to_act_in_ns = 12; /* Trrd */
sdram_config.idle_timeout_in_ns = 6;
sdram_config.cs_mux_pin = DRAM_IO_MUX_NOT_USED;
sdram_config.cs = BOARD_SDRAM_CS;
sdram_config.base_address = BOARD_SDRAM_ADDRESS;
sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
sdram_config.delay_cell_value = 29;
dram_config_sdram(HPM_DRAM, dram_clk_in_hz, &sdram_config);
}
void board_init_sd_pins(SDXC_Type *ptr)
{
if (ptr == HPM_SDXC1) {
init_sdxc_pins(ptr, false);
} else {
while (1) {
}
}
}
uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
{
uint32_t actual_freq = 0;
do {
if (ptr != HPM_SDXC1) {
break;
}
clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
sdxc_enable_inverse_clock(ptr, false);
sdxc_enable_sd_clock(ptr, false);
/* Configure the clock below 400KHz for the identification state */
if (freq <= 400000UL) {
clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
}
/* configure the clock to 24MHz for the SDR12/Default speed */
else if (freq <= 25000000UL) {
clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
}
/* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
else if (freq <= 50000000UL) {
clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
}
/* Configure the clock to 100MHz for the SDR50 */
else if (freq <= 100000000UL) {
clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
}
/* Configure the clock to 166MHz for SDR104/HS200/HS400 */
else if (freq <= 208000000UL) {
clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
}
/* For other unsupported clock ranges, configure the clock to 24MHz */
else {
clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
}
sdxc_enable_inverse_clock(ptr, true);
sdxc_enable_sd_clock(ptr, true);
actual_freq = clock_get_frequency(sdxc_clk);
} while (false);
return actual_freq;
}
hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
{
if (internal == false) {
return status_success;
}
/* Configure Enet clock to output reference clock */
if (ptr == HPM_ENET0) {
/* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
} else if (ptr == HPM_ENET1) {
/* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
} else {
return status_invalid_argument;
}
return status_success;
}
void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
{
sdxc_switch_to_1v8_signal(ptr, true);
init_sdxc_pins(ptr, true);
}
bool board_sd_detect_card(SDXC_Type *ptr)
{
return sdxc_is_card_inserted(ptr);
}
void board_init_rgb_pwm_pins(void)
{
init_led_pins_as_pwm();
}
void board_init_beep_pwm_pins(void)
{
init_beep_pwm_pins();
}
hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
{
init_enet_pins(ptr);
if (ptr == HPM_ENET1) {
gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
} else {
return status_invalid_argument;
}
return status_success;
}
void board_reset_enet_phy(ENET_Type *ptr)
{
gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
board_delay_ms(BOARD_ENET1_PHY_RST_TIME);
gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
}