CV180ZB/CV1800B/CV1801B are high-performance, low-power chips designed for consumer surveillance IP cameras, smart home devices, and other product areas. They integrate H.264/H.265 video compression encoders and ISPs, and support various image enhancement and correction algorithms such as digital wide dynamic range, 3D noise reduction, defogging, and lens distortion correction, providing professional-grade video image quality to customers.
1. Processor Core
- Main processor: RISCV C906 @ 1.0Ghz
- 32KB I-cache, 64KB D-Cache
- Integrated vector and floating-point units (FPU).
- Coprocessor: RISCV C906 @ 700Mhz
- Integrated floating-point unit (FPU).
2. Memory Interface
- Built-in DRAM: DDR2 16bitx1, with a maximum speed of 1333Mbps, capacity of 512Mbit (64MB).
- Support for SPI NOR flash interface (1.8V / 3.0V)
- Support for 1, 2, 4-wire modes
- Maximum support of 256MBytes
- Support for SPI Nand flash interface (1.8V / 3.0V)
- Support for 1KB/2KB/4KB page (corresponding to a maximum capacity of 16GB/32GB/64GB)
- Use the built-in ECC module of the device itself
3. Peripherals
- Up to 26 GPIO pins on the MilkV-Duo 40-pin header provide access to internal peripherals such as SDIO, I2C, PWM, SPI, J-TAG, and UART.
- Up to 3x I2C
- Up to 5x UART
- Up to 1x SDIO1
- Up to 1x SPI
- Up to 2x ADC
- Up to 7x PWM
- Up to 1x RUN
- Up to 1x JTAG
- Integrated MAC PHY supporting 10/100Mbps full-duplex or half-duplex mode
- One USB Host / device interface
## Toolchain Download
Download the `riscv64-unknown-linux-musl-gcc` toolchain from: [https://github.com/RT-Thread/toolchains-ci/releases/download/v1.7/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu_latest.tar.bz2](https://github.com/RT-Thread/toolchains-ci/releases/download/v1.7/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu_latest.tar.bz2)
> Note:
The current BSP only supports Linux compilation.
After correct extraction, add the local path of the `riscv64-unknown-linux-musl-gcc` toolchain to `EXEC_PATH` in `rtconfig.py`, or specify the path through the `RTT_EXEC_PATH` environment variable.
It will automatically download environment-related scripts to the ~/.env directory, and then execute
```shell
$ source ~/.env/env.sh
$ pkgs --update
```
After updating the software packages, use `scons -j10` or `scons -j10 --verbose` to compile this board support package. Alternatively, you can use the command `scons --exec-path="GCC_toolchain_path"` to specify the toolchain location for compilation. If the compilation is successful, an rtthread.elf file will be generated.
After the compilation is completed, the script automatically calls the `./mksdimg.sh` script to package and generate the `boot.sd` file, which is the kernel file for SD card boot.
## Running
1. Divide the SD card into 2 partitions, with the first partition used to store bin files and the second partition used as a data storage partition. The partition format is FAT32.
2. Copy the `fip.bin` and `boot.sd` files from the root directory to the first partition of the SD card. For subsequent firmware updates, you only need to copy the `boot.sd` file.
Where:
- fip.bin: the bin file after fsbl、opensbi and U-Boot are packaged
- boot.sd: the bin file after the kernel is packaged
After updating `boot.sd`, power on again and you will see the serial output information: