rt-thread-official/bsp/lm3s/Libraries/driverlib/usb.c

3435 lines
116 KiB
C
Raw Normal View History

//*****************************************************************************
//
// usb.c - Driver for the USB Interface.
//
// Copyright (c) 2007-2009 Luminary Micro, Inc. All rights reserved.
// Software License Agreement
//
// Luminary Micro, Inc. (LMI) is supplying this software for use solely and
// exclusively on LMI's microcontroller products.
//
// The software is owned by LMI and/or its suppliers, and is protected under
// applicable copyright laws. All rights are reserved. You may not combine
// this software with "viral" open-source software in order to form a larger
// program. Any use in violation of the foregoing restrictions may subject
// the user to criminal sanctions under applicable laws, as well as to civil
// liability for the breach of the terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 4694 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup usb_api
//! @{
//
//*****************************************************************************
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_usb.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
#include "driverlib/udma.h"
#include "driverlib/usb.h"
//*****************************************************************************
//
// Amount to shift the RX interrupt sources by in the flags used in the
// interrupt calls.
//
//*****************************************************************************
#define USB_INT_RX_SHIFT 8
//*****************************************************************************
//
// Amount to shift the status interrupt sources by in the flags used in the
// interrupt calls.
//
//*****************************************************************************
#define USB_INT_STATUS_SHIFT 24
//*****************************************************************************
//
// Amount to shift the RX endpoint status sources by in the flags used in the
// calls.
//
//*****************************************************************************
#define USB_RX_EPSTATUS_SHIFT 16
//*****************************************************************************
//
// Converts from an endpoint specifier to the offset of the endpoint's
// control/status registers.
//
//*****************************************************************************
#define EP_OFFSET(Endpoint) (Endpoint - 0x10)
//*****************************************************************************
//
// Sets one of the indexed registers.
//
// \param ulBase specifies the USB module base address.
// \param ulEndpoint is the endpoint index to target for this write.
// \param ulIndexedReg is the indexed register to write to.
// \param ucValue is the value to write to the register.
//
// This function is used to access the indexed registers for each endpoint.
// The only registers that are indexed are the FIFO configuration registers
// which are not used after configuration.
//
// \return None.
//
//*****************************************************************************
static void
USBIndexWrite(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulIndexedReg, unsigned long ulValue,
unsigned long ulSize)
{
unsigned long ulIndex;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == 0) || (ulEndpoint == 1) || (ulEndpoint == 2) ||
(ulEndpoint == 3));
ASSERT((ulSize == 1) || (ulSize == 2));
//
// Save the old index in case it was in use.
//
ulIndex = HWREGB(ulBase + USB_O_EPIDX);
//
// Set the index.
//
HWREGB(ulBase + USB_O_EPIDX) = ulEndpoint;
//
// Determine the size of the register value.
//
if(ulSize == 1)
{
//
// Set the value.
//
HWREGB(ulBase + ulIndexedReg) = ulValue;
}
else
{
//
// Set the value.
//
HWREGH(ulBase + ulIndexedReg) = ulValue;
}
//
// Restore the old index in case it was in use.
//
HWREGB(ulBase + USB_O_EPIDX) = ulIndex;
}
//*****************************************************************************
//
// Reads one of the indexed registers.
//
// \param ulBase specifies the USB module base address.
// \param ulEndpoint is the endpoint index to target for this write.
// \param ulIndexedReg is the indexed register to write to.
//
// This function is used interally to access the indexed registers for each
// endpoint. The only registers that are indexed are the FIFO configuration
// registers which are not used after configuration.
//
// \return The value in the register requested.
//
//*****************************************************************************
static unsigned long
USBIndexRead(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulIndexedReg, unsigned long ulSize)
{
unsigned char ulIndex;
unsigned char ulValue;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == 0) || (ulEndpoint == 1) || (ulEndpoint == 2) ||
(ulEndpoint == 3));
ASSERT((ulSize == 1) || (ulSize == 2));
//
// Save the old index in case it was in use.
//
ulIndex = HWREGB(ulBase + USB_O_EPIDX);
//
// Set the index.
//
HWREGB(ulBase + USB_O_EPIDX) = ulEndpoint;
//
// Determine the size of the register value.
//
if(ulSize == 1)
{
//
// Get the value.
//
ulValue = HWREGB(ulBase + ulIndexedReg);
}
else
{
//
// Get the value.
//
ulValue = HWREGH(ulBase + ulIndexedReg);
}
//
// Restore the old index in case it was in use.
//
HWREGB(ulBase + USB_O_EPIDX) = ulIndex;
//
// Return the register's value.
//
return(ulValue);
}
//*****************************************************************************
//
//! Puts the USB bus in a suspended state.
//!
//! \param ulBase specifies the USB module base address.
//!
//! When used in host mode, this function will put the USB bus in the suspended
//! state.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostSuspend(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Send the suspend signaling to the USB bus.
//
HWREGB(ulBase + USB_O_POWER) |= USB_POWER_SUSPEND;
}
//*****************************************************************************
//
//! Handles the USB bus reset condition.
//!
//! \param ulBase specifies the USB module base address.
//! \param bStart specifies whether to start or stop signaling reset on the USB
//! bus.
//!
//! When this function is called with the \e bStart parameter set to \b true,
//! this function will cause the start of a reset condition on the USB bus.
//! The caller should then delay at least 20ms before calling this function
//! again with the \e bStart parameter set to \b false.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostReset(unsigned long ulBase, tBoolean bStart)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Send a reset signal to the bus.
//
if(bStart)
{
HWREGB(ulBase + USB_O_POWER) |= USB_POWER_RESET;
}
else
{
HWREGB(ulBase + USB_O_POWER) &= ~USB_POWER_RESET;
}
}
//*****************************************************************************
//
//! Handles the USB bus resume condition.
//!
//! \param ulBase specifies the USB module base address.
//! \param bStart specifies if the USB controller is entering or leaving the
//! resume signaling state.
//!
//! When in device mode this function will bring the USB controller out of the
//! suspend state. This call should first be made with the \e bStart parameter
//! set to \b true to start resume signaling. The device application should
//! then delay at least 10ms but not more than 15ms before calling this
//! function with the \e bStart parameter set to \b false.
//!
//! When in host mode this function will signal devices to leave the suspend
//! state. This call should first be made with the \e bStart parameter set to
//! \b true to start resume signaling. The host application should then delay
//! at least 20ms before calling this function with the \e bStart parameter set
//! to \b false. This will cause the controller to complete the resume
//! signaling on the USB bus.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostResume(unsigned long ulBase, tBoolean bStart)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Send a resume signal to the bus.
//
if(bStart)
{
HWREGB(ulBase + USB_O_POWER) |= USB_POWER_RESUME;
}
else
{
HWREGB(ulBase + USB_O_POWER) &= ~USB_POWER_RESUME;
}
}
//*****************************************************************************
//
//! Returns the current speed of the USB device connected.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function will return the current speed of the USB bus.
//!
//! \note This function should only be called in host mode.
//!
//! \return Returns either \b USB_LOW_SPEED, \b USB_FULL_SPEED, or
//! \b USB_UNDEF_SPEED.
//
//*****************************************************************************
unsigned long
USBHostSpeedGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// If the Full Speed device bit is set, then this is a full speed device.
//
if(HWREGB(ulBase + USB_O_DEVCTL) & USB_DEVCTL_FSDEV)
{
return(USB_FULL_SPEED);
}
//
// If the Low Speed device bit is set, then this is a low speed device.
//
if(HWREGB(ulBase + USB_O_DEVCTL) & USB_DEVCTL_LSDEV)
{
return(USB_LOW_SPEED);
}
//
// The device speed is not known.
//
return(USB_UNDEF_SPEED);
}
//*****************************************************************************
//
//! Returns the status of the USB interrupts.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function will read the source of the interrupt for the USB controller.
//! There are three groups of interrupt sources, IN Endpoints, OUT Endpoints,
//! and general status changes. This call will return the current status for
//! all of these interrupts. The bit values returned should be compared
//! against the \b USB_HOST_IN, \b USB_HOST_OUT, \b USB_HOST_EP0,
//! \b USB_DEV_IN, \b USB_DEV_OUT, and \b USB_DEV_EP0 values.
//!
//! \note This call will clear the source of all of the general status
//! interrupts.
//!
//! \return Returns the status of the sources for the USB controller's
//! interrupt.
//
//*****************************************************************************
unsigned long
USBIntStatus(unsigned long ulBase)
{
unsigned long ulStatus;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Get the transmit interrupt status.
//
ulStatus = (HWREGH(ulBase + USB_O_TXIS));
//
// Get the receive interrupt status, these bits go into the second byte of
// the returned value.
//
ulStatus |= (HWREGH(ulBase + USB_O_RXIS) << USB_INT_RX_SHIFT);
//
// Get the general interrupt status, these bits go into the upper 8 bits
// of the returned value.
//
ulStatus |= (HWREGB(ulBase + USB_O_IS) << USB_INT_STATUS_SHIFT);
//
// Add the power fault status.
//
if(HWREG(ulBase + USB_O_EPCISC) & USB_EPCISC_PF)
{
//
// Indicate a power fault was detected.
//
ulStatus |= USB_INT_POWER_FAULT;
//
// Clear the power fault interrupt.
//
HWREGB(ulBase + USB_O_EPCISC) |= USB_EPCISC_PF;
}
if(HWREG(USB0_BASE + USB_O_IDVISC) & USB_IDVRIS_ID)
{
//
// Indicate a id detection was detected.
//
ulStatus |= USB_INT_MODE_DETECT;
//
// Clear the id detection interrupt.
//
HWREG(USB0_BASE + USB_O_IDVISC) |= USB_IDVRIS_ID;
}
//
// Return the combined interrupt status.
//
return(ulStatus);
}
//*****************************************************************************
//
//! Disables the sources for USB interrupts.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulFlags specifies which interrupts to disable.
//!
//! This function will disable the USB controller from generating the
//! interrupts indicated by the \e ulFlags parameter. There are three groups
//! of interrupt sources, IN Endpoints, OUT Endpoints, and general status
//! changes, specified by \b USB_INT_HOST_IN, \b USB_INT_HOST_OUT,
//! \b USB_INT_DEV_IN, \b USB_INT_DEV_OUT, and \b USB_INT_STATUS. If
//! \b USB_INT_ALL is specified then all interrupts will be disabled.
//!
//! \return None.
//
//*****************************************************************************
void
USBIntDisable(unsigned long ulBase, unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulFlags & ~(USB_INT_ALL)) == 0);
//
// If any transmit interrupts were disabled then write the transmit
// interrupt settings out to the hardware.
//
if(ulFlags & (USB_INT_HOST_OUT | USB_INT_DEV_IN | USB_INT_EP0))
{
HWREGH(ulBase + USB_O_TXIE) &=
~(ulFlags & (USB_INT_HOST_OUT | USB_INT_DEV_IN | USB_INT_EP0));
}
//
// If any receive interrupts were disabled then write the receive interrupt
// settings out to the hardware.
//
if(ulFlags & (USB_INT_HOST_IN | USB_INT_DEV_OUT))
{
HWREGH(ulBase + USB_O_RXIE) &=
~((ulFlags & (USB_INT_HOST_IN | USB_INT_DEV_OUT)) >>
USB_INT_RX_SHIFT);
}
//
// If any general interrupts were disabled then write the general interrupt
// settings out to the hardware.
//
if(ulFlags & USB_INT_STATUS)
{
HWREGB(ulBase + USB_O_IE) &=
~((ulFlags & USB_INT_STATUS) >> USB_INT_STATUS_SHIFT);
}
//
// Disable the power fault interrupt.
//
if(ulFlags & USB_INT_POWER_FAULT)
{
HWREG(ulBase + USB_O_EPCIM) = 0;
}
//
// Disable the ID pin detect interrupt.
//
if(ulFlags & USB_INT_MODE_DETECT)
{
HWREG(USB0_BASE + USB_O_IDVIM) = 0;
}
}
//*****************************************************************************
//
//! Enables the sources for USB interrupts.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulFlags specifies which interrupts to enable.
//!
//! This function will enable the USB controller's ability to generate the
//! interrupts indicated by the \e ulFlags parameter. There are three
//! groups of interrupt sources, IN Endpoints, OUT Endpoints, and
//! general status changes, specified by \b USB_INT_HOST_IN,
//! \b USB_INT_HOST_OUT, \b USB_INT_DEV_IN, \b USB_INT_DEV_OUT, and
//! \b USB_STATUS. If \b USB_INT_ALL is specified then all interrupts will be
//! enabled.
//!
//! \note A call must be made to enable the interrupt in the main interrupt
//! controller to receive interrupts. The USBIntRegister() API performs this
//! controller level interrupt enable. However if static interrupt handlers
//! are used then then a call to IntEnable() must be made in order to allow any
//! USB interrupts to occur.
//!
//! \return None.
//
//*****************************************************************************
void
USBIntEnable(unsigned long ulBase, unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulFlags & (~USB_INT_ALL)) == 0);
//
// If any transmit interrupts were enabled then write the transmit
// interrupt settings out to the hardware.
//
if(ulFlags & (USB_INT_HOST_OUT | USB_INT_DEV_IN | USB_INT_EP0))
{
HWREGH(ulBase + USB_O_TXIE) |=
ulFlags & (USB_INT_HOST_OUT | USB_INT_DEV_IN | USB_INT_EP0);
}
//
// If any receive interrupts were enabled then write the receive interrupt
// settings out to the hardware.
//
if(ulFlags & (USB_INT_HOST_IN | USB_INT_DEV_OUT))
{
HWREGH(ulBase + USB_O_RXIE) |=
((ulFlags & (USB_INT_HOST_IN | USB_INT_DEV_OUT)) >>
USB_INT_RX_SHIFT);
}
//
// If any general interrupts were enabled then write the general interrupt
// settings out to the hardware.
//
if(ulFlags & USB_INT_STATUS)
{
HWREGB(ulBase + USB_O_IE) |=
(ulFlags & USB_INT_STATUS) >> USB_INT_STATUS_SHIFT;
}
//
// Enable the power fault interrupt.
//
if(ulFlags & USB_INT_POWER_FAULT)
{
HWREG(ulBase + USB_O_EPCIM) = USB_EPCIM_PF;
}
//
// Enable the ID pin detect interrupt.
//
if(ulFlags & USB_INT_MODE_DETECT)
{
HWREG(USB0_BASE + USB_O_IDVIM) = USB_IDVIM_ID;
}
}
//*****************************************************************************
//
//! Registers an interrupt handler for the USB controller.
//!
//! \param ulBase specifies the USB module base address.
//! \param pfnHandler is a pointer to the function to be called when a USB
//! interrupt occurs.
//!
//! This sets the handler to be called when a USB interrupt occurs. This will
//! also enable the global USB interrupt in the interrupt controller. The
//! specific desired USB interrupts must be enabled via a separate call to
//! USBIntEnable(). It is the interrupt handler's responsibility to clear the
//! interrupt sources via a call to USBIntStatus().
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
USBIntRegister(unsigned long ulBase, void(*pfnHandler)(void))
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Register the interrupt handler.
//
IntRegister(INT_USB0, pfnHandler);
//
// Enable the USB interrupt.
//
IntEnable(INT_USB0);
}
//*****************************************************************************
//
//! Unregisters an interrupt handler for the USB controller.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function unregister the interrupt handler. This function will also
//! disable the USB interrupt in the interrupt controller.
//!
//! \sa IntRegister() for important information about registering or
//! unregistering interrupt handlers.
//!
//! \return None.
//
//*****************************************************************************
void
USBIntUnregister(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Unregister the interrupt handler.
//
IntUnregister(INT_USB0);
//
// Disable the CAN interrupt.
//
IntDisable(INT_USB0);
}
//*****************************************************************************
//
//! Returns the current status of an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//!
//! This function will return the status of a given endpoint. If any of these
//! status bits need to be cleared, then these these values must be cleared by
//! calling the USBDevEndpointStatusClear() or USBHostEndpointStatusClear()
//! functions.
//!
//! The following are the status flags for host mode:
//!
//! - \b USB_HOST_IN_PID_ERROR - PID error on the given endpoint.
//! - \b USB_HOST_IN_NOT_COMP - The device failed to respond to an IN request.
//! - \b USB_HOST_IN_STALL - A stall was received on an IN endpoint.
//! - \b USB_HOST_IN_DATA_ERROR - There was a CRC or bit-stuff error on an IN
//! endpoint in Isochronous mode.
//! - \b USB_HOST_IN_NAK_TO - NAKs received on this IN endpoint for more than
//! the specified timeout period.
//! - \b USB_HOST_IN_ERROR - Failed to communicate with a device using this IN
//! endpoint.
//! - \b USB_HOST_IN_FIFO_FULL - This IN endpoint's FIFO is full.
//! - \b USB_HOST_IN_PKTRDY - Data packet ready on this IN endpoint.
//! - \b USB_HOST_OUT_NAK_TO - NAKs received on this OUT endpoint for more than
//! the specified timeout period.
//! - \b USB_HOST_OUT_NOT_COMP - The device failed to respond to an OUT
//! request.
//! - \b USB_HOST_OUT_STALL - A stall was received on this OUT endpoint.
//! - \b USB_HOST_OUT_ERROR - Failed to communicate with a device using this
//! OUT endpoint.
//! - \b USB_HOST_OUT_FIFO_NE - This endpoint's OUT FIFO is not empty.
//! - \b USB_HOST_OUT_PKTPEND - The data transfer on this OUT endpoint has not
//! completed.
//! - \b USB_HOST_EP0_NAK_TO - NAKs received on endpoint zero for more than the
//! specified timeout period.
//! - \b USB_HOST_EP0_ERROR - The device failed to respond to a request on
//! endpoint zero.
//! - \b USB_HOST_EP0_IN_STALL - A stall was received on endpoint zero for an
//! IN transaction.
//! - \b USB_HOST_EP0_IN_PKTRDY - Data packet ready on endpoint zero for an IN
//! transaction.
//!
//! The following are the status flags for device mode:
//!
//! - \b USB_DEV_OUT_SENT_STALL - A stall was sent on this OUT endpoint.
//! - \b USB_DEV_OUT_DATA_ERROR - There was a CRC or bit-stuff error on an OUT
//! endpoint.
//! - \b USB_DEV_OUT_OVERRUN - An OUT packet was not loaded due to a full FIFO.
//! - \b USB_DEV_OUT_FIFO_FULL - The OUT endpoint's FIFO is full.
//! - \b USB_DEV_OUT_PKTRDY - There is a data packet ready in the OUT
//! endpoint's FIFO.
//! - \b USB_DEV_IN_NOT_COMP - A larger packet was split up, more data to come.
//! - \b USB_DEV_IN_SENT_STALL - A stall was sent on this IN endpoint.
//! - \b USB_DEV_IN_UNDERRUN - Data was requested on the IN endpoint and no
//! data was ready.
//! - \b USB_DEV_IN_FIFO_NE - The IN endpoint's FIFO is not empty.
//! - \b USB_DEV_IN_PKTPEND - The data transfer on this IN endpoint has not
//! completed.
//! - \b USB_DEV_EP0_SETUP_END - A control transaction ended before Data End
//! condition was sent.
//! - \b USB_DEV_EP0_SENT_STALL - A stall was sent on endpoint zero.
//! - \b USB_DEV_EP0_IN_PKTPEND - The data transfer on endpoint zero has not
//! completed.
//! - \b USB_DEV_EP0_OUT_PKTRDY - There is a data packet ready in endpoint
//! zero's OUT FIFO.
//!
//! \return The current status flags for the endpoint depending on mode.
//
//*****************************************************************************
unsigned long
USBEndpointStatus(unsigned long ulBase, unsigned long ulEndpoint)
{
unsigned long ulStatus;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Get the TX portion of the endpoint status.
//
ulStatus = HWREGH(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRL1);
//
// Get the RX portion of the endpoint status.
//
ulStatus |= ((HWREGH(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRL1)) <<
USB_RX_EPSTATUS_SHIFT);
//
// Return the endpoint status.
//
return(ulStatus);
}
//*****************************************************************************
//
//! Clears the status bits in this endpoint in host mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags are the status bits that will be cleared.
//!
//! This function will clear the status of any bits that are passed in the
//! \e ulFlags parameter. The \e ulFlags parameter can take the value returned
//! from the USBEndpointStatus() call.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostEndpointStatusClear(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Clear the specified flags for the endpoint.
//
if(ulEndpoint == USB_EP_0)
{
HWREGB(ulBase + USB_O_CSRL0) &= ~ulFlags;
}
else
{
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) &= ~ulFlags;
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(ulFlags >> USB_RX_EPSTATUS_SHIFT);
}
}
//*****************************************************************************
//
//! Clears the status bits in this endpoint in device mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags are the status bits that will be cleared.
//!
//! This function will clear the status of any bits that are passed in the
//! \e ulFlags parameter. The \e ulFlags parameter can take the value returned
//! from the USBEndpointStatus() call.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointStatusClear(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// If this is endpoint 0 then the bits have different meaning and map into
// the TX memory location.
//
if(ulEndpoint == USB_EP_0)
{
//
// Set the Serviced RxPktRdy bit to clear the RxPktRdy.
//
if(ulFlags & USB_DEV_EP0_OUT_PKTRDY)
{
HWREGB(ulBase + USB_O_CSRL0) |= USB_CSRL0_RXRDYC;
}
//
// Set the serviced Setup End bit to clear the SetupEnd status.
//
if(ulFlags & USB_DEV_EP0_SETUP_END)
{
HWREGB(ulBase + USB_O_CSRL0) |= USB_CSRL0_SETENDC;
}
//
// Clear the Sent Stall status flag.
//
if(ulFlags & USB_DEV_EP0_SENT_STALL)
{
HWREGB(ulBase + USB_O_CSRL0) &= ~(USB_DEV_EP0_SENT_STALL);
}
}
else
{
//
// Clear out any TX flags that were passed in. Only
// USB_DEV_TX_SENT_STALL and USB_DEV_TX_UNDERRUN should be cleared.
//
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(ulFlags & (USB_DEV_TX_SENT_STALL | USB_DEV_TX_UNDERRUN));
//
// Clear out valid RX flags that were passed in. Only
// USB_DEV_RX_SENT_STALL, USB_DEV_RX_DATA_ERROR, and USB_DEV_RX_OVERRUN
// should be cleared.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~((ulFlags & (USB_DEV_RX_SENT_STALL | USB_DEV_RX_DATA_ERROR |
USB_DEV_RX_OVERRUN)) >> USB_RX_EPSTATUS_SHIFT);
}
}
//*****************************************************************************
//
//! Sets the value data toggle on an endpoint in host mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies the endpoint to reset the data toggle.
//! \param bDataToggle specifies whether to set the state to DATA0 or DATA1.
//! \param ulFlags specifies whether to set the IN or OUT endpoint.
//!
//! This function is used to force the state of the data toggle in host mode.
//! If the value passed in the \e bDataToggle parameter is \b false, then the
//! data toggle will be set to the DATA0 state, and if it is \b true it will be
//! set to the DATA1 state. The \e ulFlags parameter can be \b USB_EP_HOST_IN
//! or \b USB_EP_HOST_OUT to access the desired portion of this endpoint. The
//! \e ulFlags parameter is ignored for endpoint zero.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostEndpointDataToggle(unsigned long ulBase, unsigned long ulEndpoint,
tBoolean bDataToggle, unsigned long ulFlags)
{
unsigned long ulDataToggle;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// The data toggle defaults to DATA0.
//
ulDataToggle = 0;
//
// See if the data toggle should be set to DATA1.
//
if(bDataToggle)
{
//
// Select the data toggle bit based on the endpoint.
//
if(ulEndpoint == USB_EP_0)
{
ulDataToggle = USB_CSRH0_DT;
}
else if(ulFlags == USB_EP_HOST_IN)
{
ulDataToggle = USB_RXCSRH1_DT;
}
else
{
ulDataToggle = USB_TXCSRH1_DT;
}
}
//
// Set the data toggle based on the endpoint.
//
if(ulEndpoint == USB_EP_0)
{
//
// Set the write enable and the bit value for endpoint zero.
//
HWREGB(ulBase + USB_O_CSRH0) =
((HWREGB(ulBase + USB_O_CSRH0) &
~(USB_CSRH0_DTWE | USB_CSRH0_DT)) |
(ulDataToggle | USB_CSRH0_DTWE));
}
else if(ulFlags == USB_EP_HOST_IN)
{
//
// Set the Write enable and the bit value for an IN endpoint.
//
HWREGB(ulBase + USB_O_RXCSRH1 + EP_OFFSET(ulEndpoint)) =
((HWREGB(ulBase + USB_O_RXCSRH1 + EP_OFFSET(ulEndpoint)) &
~(USB_RXCSRH1_DTWE | USB_RXCSRH1_DT)) |
(ulDataToggle | USB_RXCSRH1_DTWE));
}
else
{
//
// Set the Write enable and the bit value for an OUT endpoint.
//
HWREGB(ulBase + USB_O_TXCSRH1 + EP_OFFSET(ulEndpoint)) =
((HWREGB(ulBase + USB_O_TXCSRH1 + EP_OFFSET(ulEndpoint)) &
~(USB_TXCSRH1_DTWE | USB_TXCSRH1_DT)) |
(ulDataToggle | USB_TXCSRH1_DTWE));
}
}
//*****************************************************************************
//
//! Sets the Data toggle on an endpoint to zero.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies the endpoint to reset the data toggle.
//! \param ulFlags specifies whether to access the IN or OUT endpoint.
//!
//! This function will cause the controller to clear the data toggle for an
//! endpoint. This call is not valid for endpoint zero and can be made with
//! host or device controllers.
//!
//! The \e ulFlags parameter should be one of \b USB_EP_HOST_OUT,
//! \b USB_EP_HOST_IN, \b USB_EP_DEV_OUT, or \b USB_EP_DEV_IN.
//!
//! \return None.
//
//*****************************************************************************
void
USBEndpointDataToggleClear(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
//
// See if the transmit or receive data toggle should be cleared.
//
if(ulFlags & (USB_EP_HOST_OUT | USB_EP_DEV_IN))
{
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_TXCSRL1_CLRDT;
}
else
{
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_RXCSRL1_CLRDT;
}
}
//*****************************************************************************
//
//! Stalls the specified endpoint in device mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies the endpoint to stall.
//! \param ulFlags specifies whether to stall the IN or OUT endpoint.
//!
//! This function will cause to endpoint number passed in to go into a stall
//! condition. If the \e ulFlags parameter is \b USB_EP_DEV_IN then the stall
//! will be issued on the IN portion of this endpoint. If the \e ulFlags
//! parameter is \b USB_EP_DEV_OUT then the stall will be issued on the OUT
//! portion of this endpoint.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointStall(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulFlags & ~(USB_EP_DEV_IN | USB_EP_DEV_OUT)) == 0)
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Determine how to stall this endpoint.
//
if(ulEndpoint == USB_EP_0)
{
//
// Perform a stall on endpoint zero.
//
HWREGB(ulBase + USB_O_CSRL0) |=
(USB_CSRL0_STALL | USB_CSRL0_RXRDYC);
}
else if(ulFlags == USB_EP_DEV_IN)
{
//
// Perform a stall on an IN endpoint.
//
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_TXCSRL1_STALL;
}
else
{
//
// Perform a stall on an OUT endpoint.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_RXCSRL1_STALL;
}
}
//*****************************************************************************
//
//! Clears the stall condition on the specified endpoint in device mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies which endpoint to remove the stall condition.
//! \param ulFlags specifies whether to remove the stall condition from the IN
//! or the OUT portion of this endpoint.
//!
//! This function will cause the endpoint number passed in to exit the stall
//! condition. If the \e ulFlags parameter is \b USB_EP_DEV_IN then the stall
//! will be cleared on the IN portion of this endpoint. If the \e ulFlags
//! parameter is \b USB_EP_DEV_OUT then the stall will be cleared on the OUT
//! portion of this endpoint.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointStallClear(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
ASSERT((ulFlags & ~(USB_EP_DEV_IN | USB_EP_DEV_OUT)) == 0)
//
// Determine how to clear the stall on this endpoint.
//
if(ulEndpoint == USB_EP_0)
{
//
// Clear the stall on endpoint zero.
//
HWREGB(ulBase + USB_O_CSRL0) &= ~USB_CSRL0_STALLED;
}
else if(ulFlags == USB_EP_DEV_IN)
{
//
// Clear the stall on an IN endpoint.
//
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(USB_TXCSRL1_STALL | USB_TXCSRL1_STALLED);
//
// Reset the data toggle.
//
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_TXCSRL1_CLRDT;
}
else
{
//
// Clear the stall on an OUT endpoint.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(USB_RXCSRL1_STALL | USB_RXCSRL1_STALLED);
//
// Reset the data toggle.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_TXCSRL1_CLRDT;
}
}
//*****************************************************************************
//
//! Connects the USB controller to the bus in device mode.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function will cause the soft connect feature of the USB controller to
//! be enabled. Call USBDisconnect() to remove the USB device from the bus.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevConnect(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Enable connection to the USB bus.
//
HWREGB(ulBase + USB_O_POWER) |= USB_POWER_SOFTCONN;
}
//*****************************************************************************
//
//! Removes the USB controller from the bus in device mode.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function will cause the soft connect feature of the USB controller to
//! remove the device from the USB bus. A call to USBDevConnect() is needed to
//! reconnect to the bus.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevDisconnect(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Disable connection to the USB bus.
//
HWREGB(ulBase + USB_O_POWER) &= (~USB_POWER_SOFTCONN);
}
//*****************************************************************************
//
//! Sets the address in device mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulAddress is the address to use for a device.
//!
//! This function will set the device address on the USB bus. This address was
//! likely received via a SET ADDRESS command from the host controller.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevAddrSet(unsigned long ulBase, unsigned long ulAddress)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Set the function address in the correct location.
//
HWREGB(ulBase + USB_O_FADDR) = (unsigned char)ulAddress;
}
//*****************************************************************************
//
//! Returns the current device address in device mode.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function will return the current device address. This address was set
//! by a call to USBDevAddrSet().
//!
//! \note This function should only be called in device mode.
//!
//! \return The current device address.
//
//*****************************************************************************
unsigned long
USBDevAddrGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Return the function address.
//
return(HWREGB(ulBase + USB_O_FADDR));
}
//*****************************************************************************
//
//! Sets the base configuration for a host endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulMaxPayload is the maximum payload for this endpoint.
//! \param ulNAKPollInterval is the either the NAK timeout limit or the polling
//! interval depending on the type of endpoint.
//! \param ulTargetEndpoint is the endpoint that the host endpoint is
//! targeting.
//! \param ulFlags are used to configure other endpoint settings.
//!
//! This function will set the basic configuration for the transmit or receive
//! portion of an endpoint in host mode. The \e ulFlags parameter determines
//! some of the configuration while the other parameters provide the rest. The
//! \e ulFlags parameter determines whether this is an IN endpoint
//! (USB_EP_HOST_IN or USB_EP_DEV_IN) or an OUT endpoint (USB_EP_HOST_OUT or
//! USB_EP_DEV_OUT), whether this is a Full speed endpoint (USB_EP_SPEED_FULL)
//! or a Low speed endpoint (USB_EP_SPEED_LOW).
//!
//! The \b USB_EP_MODE_ flags control the type of the endpoint.
//! - \b USB_EP_MODE_CTRL is a control endpoint.
//! - \b USB_EP_MODE_ISOC is an isochronous endpoint.
//! - \b USB_EP_MODE_BULK is a bulk endpoint.
//! - \b USB_EP_MODE_INT is an interrupt endpoint.
//!
//! The \e ulNAKPollInterval parameter has different meanings based on the
//! \b USB_EP_MODE value and whether or not this call is being made for
//! endpoint zero or another endpoint. For endpoint zero or any Bulk
//! endpoints, this value always indicates the number of frames to allow a
//! device to NAK before considering it a timeout. If this endpoint is an
//! isochronous or interrupt endpoint, this value is the polling interval for
//! this endpoint.
//!
//! For interrupt endpoints the polling interval is simply the number of
//! frames between polling an interrupt endpoint. For isochronous endpoints
//! this value represents a polling interval of 2 ^ (\e ulNAKPollInterval - 1)
//! frames. When used as a NAK timeout, the \e ulNAKPollInterval value
//! specifies 2 ^ (\e ulNAKPollInterval - 1) frames before issuing a time out.
//! There are two special time out values that can be specified when setting
//! the \e ulNAKPollInterval value. The first is \b MAX_NAK_LIMIT which is the
//! maximum value that can be passed in this variable. The other is
//! \b DISABLE_NAK_LIMIT which indicates that there should be no limit on the
//! number of NAKs.
//!
//! The \b USB_EP_DMA_MODE_ flags enables the type of DMA used to access the
//! endpoint's data FIFOs. The choice of the DMA mode depends on how the DMA
//! controller is configured and how it is being used. See the ``Using USB
//! with the uDMA Controller'' section for more information on DMA
//! configuration.
//!
//! When configuring the OUT portion of an endpoint, the \b USB_EP_AUTO_SET bit
//! is specified to cause the transmission of data on the USB bus to start
//! as soon as the number of bytes specified by \e ulMaxPayload have been
//! written into the OUT FIFO for this endpoint.
//!
//! When configuring the IN portion of an endpoint, the \b USB_EP_AUTO_REQUEST
//! bit can be specified to trigger the request for more data once the FIFO has
//! been drained enough to fit \e ulMaxPayload bytes. The \b USB_EP_AUTO_CLEAR
//! bit can be used to clear the data packet ready flag automatically once the
//! data has been read from the FIFO. If this is not used, this flag must be
//! manually cleared via a call to USBDevEndpointStatusClear() or
//! USBHostEndpointStatusClear().
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostEndpointConfig(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulMaxPayload,
unsigned long ulNAKPollInterval,
unsigned long ulTargetEndpoint, unsigned long ulFlags)
{
unsigned long ulRegister;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
ASSERT(ulNAKPollInterval <= MAX_NAK_LIMIT);
//
// Endpoint zero is configured differently than the other endpoints, so see
// if this is endpoint zero.
//
if(ulEndpoint == USB_EP_0)
{
//
// Set the NAK timeout.
//
HWREGB(ulBase + USB_O_NAKLMT) = ulNAKPollInterval;
//
// Set the transfer type information.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TYPE0) =
((ulFlags & USB_EP_SPEED_FULL) ? USB_TYPE0_SPEED_FULL :
USB_TYPE0_SPEED_LOW);
}
else
{
//
// Start with the target endpoint.
//
ulRegister = ulTargetEndpoint;
//
// Set the speed for the device using this endpoint.
//
if(ulFlags & USB_EP_SPEED_FULL)
{
ulRegister |= USB_TXTYPE1_SPEED_FULL;
}
else
{
ulRegister |= USB_TXTYPE1_SPEED_LOW;
}
//
// Set the protocol for the device using this endpoint.
//
switch(ulFlags & USB_EP_MODE_MASK)
{
//
// The bulk protocol is being used.
//
case USB_EP_MODE_BULK:
{
ulRegister |= USB_TXTYPE1_PROTO_BULK;
break;
}
//
// The isochronous protocol is being used.
//
case USB_EP_MODE_ISOC:
{
ulRegister |= USB_TXTYPE1_PROTO_ISOC;
break;
}
//
// The interrupt protocol is being used.
//
case USB_EP_MODE_INT:
{
ulRegister |= USB_TXTYPE1_PROTO_INT;
break;
}
//
// The control protocol is being used.
//
case USB_EP_MODE_CTRL:
{
ulRegister |= USB_TXTYPE1_PROTO_CTRL;
break;
}
}
//
// See if the transmit or receive endpoint is being configured.
//
if(ulFlags & USB_EP_HOST_OUT)
{
//
// Set the transfer type information.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXTYPE1) =
ulRegister;
//
// Set the NAK timeout or polling interval.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXINTERVAL1) =
ulNAKPollInterval;
//
// Set the Maximum Payload per transaction.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXMAXP1) =
ulMaxPayload;
//
// Set the transmit control value to zero.
//
ulRegister = 0;
//
// Allow auto setting of TxPktRdy when max packet size has been
// loaded into the FIFO.
//
if(ulFlags & USB_EP_AUTO_SET)
{
ulRegister |= USB_TXCSRH1_AUTOSET;
}
//
// Configure the DMA Mode.
//
if(ulFlags & USB_EP_DMA_MODE_1)
{
ulRegister |= USB_TXCSRH1_DMAEN | USB_TXCSRH1_DMAMOD;
}
else if(ulFlags & USB_EP_DMA_MODE_0)
{
ulRegister |= USB_TXCSRH1_DMAEN;
}
//
// Write out the transmit control value.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRH1) =
(unsigned char)ulRegister;
}
else
{
//
// Set the transfer type information.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXTYPE1) =
ulRegister;
//
// Set the NAK timeout or polling interval.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXINTERVAL1) =
ulNAKPollInterval;
//
// Set the receive control value to zero.
//
ulRegister = 0;
//
// Allow auto clearing of RxPktRdy when packet of size max packet
// has been unloaded from the FIFO.
//
if(ulFlags & USB_EP_AUTO_CLEAR)
{
ulRegister |= USB_RXCSRH1_AUTOCL;
}
//
// Configure the DMA Mode.
//
if(ulFlags & USB_EP_DMA_MODE_1)
{
ulRegister |= USB_RXCSRH1_DMAEN | USB_RXCSRH1_DMAMOD;
}
else if(ulFlags & USB_EP_DMA_MODE_0)
{
ulRegister |= USB_RXCSRH1_DMAEN;
}
//
// Write out the receive control value.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRH1) =
(unsigned char)ulRegister;
}
}
}
//*****************************************************************************
//
//! Sets the configuration for an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulMaxPacketSize is the maximum packet size for this endpoint.
//! \param ulFlags are used to configure other endpoint settings.
//!
//! This function will set the basic configuration for an endpoint in device
//! mode. Endpoint zero does not have a dynamic configuration, so this
//! function should not be called for endpoint zero. The \e ulFlags parameter
//! determines some of the configuration while the other parameters provide the
//! rest.
//!
//! The \b USB_EP_MODE_ flags define what the type is for the given endpoint.
//!
//! - \b USB_EP_MODE_CTRL is a control endpoint.
//! - \b USB_EP_MODE_ISOC is an isochronous endpoint.
//! - \b USB_EP_MODE_BULK is a bulk endpoint.
//! - \b USB_EP_MODE_INT is an interrupt endpoint.
//!
//! The \b USB_EP_DMA_MODE_ flags determines the type of DMA access to the
//! endpoint data FIFOs. The choice of the DMA mode depends on how the DMA
//! controller is configured and how it is being used. See the ``Using USB
//! with the uDMA Controller'' section for more information on DMA
//! configuration.
//!
//! When configuring an IN endpoint, the \b USB_EP_AUTO_SET bit can be
//! specified to cause the automatic transmission of data on the USB bus as
//! soon as \e ulMaxPacketSize bytes of data are written into the FIFO for
//! this endpoint. This is commonly used with DMA as no interaction is
//! required to start the transmission of data.
//!
//! When configuring an OUT endpoint, the \b USB_EP_AUTO_REQUEST bit is
//! specified to trigger the request for more data once the FIFO has been
//! drained enough to receive \e ulMaxPacketSize more bytes of data. Also for
//! OUT endpoints, the \b USB_EP_AUTO_CLEAR bit can be used to clear the data
//! packet ready flag automatically once the data has been read from the FIFO.
//! If this is not used, this flag must be manually cleared via a call to
//! USBDevEndpointStatusClear(). Both of these settings can be used to remove
//! the need for extra calls when using the controller in DMA mode.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointConfig(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulMaxPacketSize, unsigned long ulFlags)
{
unsigned long ulRegister;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
//
// Determine if a transmit or receive endpoint is being configured.
//
if(ulFlags & USB_EP_DEV_IN)
{
//
// Set the maximum packet size.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXMAXP1) =
ulMaxPacketSize;
//
// The transmit control value is zero unless options are enabled.
//
ulRegister = 0;
//
// Allow auto setting of TxPktRdy when max packet size has been loaded
// into the FIFO.
//
if(ulFlags & USB_EP_AUTO_SET)
{
ulRegister |= USB_TXCSRH1_AUTOSET;
}
//
// Configure the DMA mode.
//
if(ulFlags & USB_EP_DMA_MODE_1)
{
ulRegister |= USB_TXCSRH1_DMAEN | USB_TXCSRH1_DMAMOD;
}
else if(ulFlags & USB_EP_DMA_MODE_0)
{
ulRegister |= USB_TXCSRH1_DMAEN;
}
//
// Enable isochronous mode if requested.
//
if((ulFlags & USB_EP_MODE_MASK) == USB_EP_MODE_ISOC)
{
ulRegister |= USB_TXCSRH1_ISO;
}
//
// Write the transmit control value.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRH1) =
(unsigned char)ulRegister;
//
// Reset the Data toggle to zero.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRL1) =
USB_TXCSRL1_CLRDT;
}
else
{
//
// Set the MaxPacketSize.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXMAXP1) =
ulMaxPacketSize;
//
// The receive control value is zero unless options are enabled.
//
ulRegister = 0;
//
// Allow auto clearing of RxPktRdy when packet of size max packet
// has been unloaded from the FIFO.
//
if(ulFlags & USB_EP_AUTO_CLEAR)
{
ulRegister = USB_RXCSRH1_AUTOCL;
}
//
// Configure the DMA mode.
//
if(ulFlags & USB_EP_DMA_MODE_1)
{
ulRegister |= USB_RXCSRH1_DMAEN | USB_RXCSRH1_DMAMOD;
}
else if(ulFlags & USB_EP_DMA_MODE_0)
{
ulRegister |= USB_RXCSRH1_DMAEN;
}
//
// Enable isochronous mode if requested.
//
if(USB_EP_MODE_ISOC & (ulFlags & USB_EP_MODE_MASK))
{
ulRegister |= USB_RXCSRH1_ISO;
}
//
// Write the receive control value.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRH1) =
(unsigned char)ulRegister;
//
// Reset the Data toggle to zero.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRL1) =
USB_RXCSRL1_CLRDT;
}
}
//*****************************************************************************
//
//! Gets the current configuration for an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param pulMaxPacketSize is a pointer which will be written with the
//! maximum packet size for this endpoint.
//! \param pulFlags is a pointer which will be written with the current
//! endpoint settings. On entry to the function, this pointer must contain
//! either \b USB_EP_DEV_IN or \b USB_EP_DEV_OUT to indicate whether the IN or
//! OUT endpoint is to be queried.
//!
//! This function will return the basic configuration for an endpoint in device
//! mode. The values returned in \e *pulMaxPacketSize and \e *pulFlags are
//! equivalent to the \e ulMaxPacketSize and \e ulFlags previously passed to
//! USBDevEndpointConfig for this endpoint.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointConfigGet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long *pulMaxPacketSize,
unsigned long *pulFlags)
{
unsigned long ulRegister;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT(pulMaxPacketSize && pulFlags);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
//
// Determine if a transmit or receive endpoint is being queried.
//
if(*pulFlags & USB_EP_DEV_IN)
{
//
// Clear the flags other than the direction bit.
//
*pulFlags = USB_EP_DEV_IN;
//
// Get the maximum packet size.
//
*pulMaxPacketSize = (unsigned long)HWREGB(ulBase +
EP_OFFSET(ulEndpoint) +
USB_O_TXMAXP1);
//
// Get the current transmit control register value.
//
ulRegister = (unsigned long)HWREGB(ulBase + EP_OFFSET(ulEndpoint) +
USB_O_TXCSRH1);
//
// Are we allowing auto setting of TxPktRdy when max packet size has
// been loaded into the FIFO?
//
if(ulRegister & USB_TXCSRH1_AUTOSET)
{
*pulFlags |= USB_EP_AUTO_SET;
}
//
// Get the DMA mode.
//
if(ulRegister & USB_TXCSRH1_DMAEN)
{
if(ulRegister & USB_TXCSRH1_DMAMOD)
{
*pulFlags |= USB_EP_DMA_MODE_1;
}
else
{
*pulFlags |= USB_EP_DMA_MODE_0;
}
}
//
// Are we in isochronous mode?
//
if(ulRegister & USB_TXCSRH1_ISO)
{
*pulFlags |= USB_EP_MODE_ISOC;
}
else
{
//
// The hardware doesn't differentiate between bulk, interrupt
// and control mode for the endpoint so we just set something
// that isn't isochronous. This ensures that anyone modifying
// the returned flags in preparation for a call to
// USBDevEndpointConfig will not see an unexpected mode change.
// If they decode the returned mode, however, they may be in for
// a surprise.
//
*pulFlags |= USB_EP_MODE_BULK;
}
}
else
{
//
// Clear the flags other than the direction bit.
//
*pulFlags = USB_EP_DEV_OUT;
//
// Get the MaxPacketSize.
//
*pulMaxPacketSize = (unsigned long)HWREGB(ulBase +
EP_OFFSET(ulEndpoint) +
USB_O_RXMAXP1);
//
// Get the current receive control register value.
//
ulRegister = (unsigned long)HWREGB(ulBase + EP_OFFSET(ulEndpoint) +
USB_O_RXCSRH1);
//
// Are we allowing auto clearing of RxPktRdy when packet of size max
// packet has been unloaded from the FIFO?
//
if(ulRegister & USB_RXCSRH1_AUTOCL)
{
*pulFlags |= USB_EP_AUTO_CLEAR;
}
//
// Get the DMA mode.
//
if(ulRegister & USB_RXCSRH1_DMAEN)
{
if(ulRegister & USB_RXCSRH1_DMAMOD)
{
*pulFlags |= USB_EP_DMA_MODE_1;
}
else
{
*pulFlags |= USB_EP_DMA_MODE_0;
}
}
//
// Are we in isochronous mode?
//
if(ulRegister & USB_RXCSRH1_ISO)
{
*pulFlags |= USB_EP_MODE_ISOC;
}
else
{
//
// The hardware doesn't differentiate between bulk, interrupt
// and control mode for the endpoint so we just set something
// that isn't isochronous. This ensures that anyone modifying
// the returned flags in preparation for a call to
// USBDevEndpointConfig will not see an unexpected mode change.
// If they decode the returned mode, however, they may be in for
// a surprise.
//
*pulFlags |= USB_EP_MODE_BULK;
}
}
}
//*****************************************************************************
//
//! Sets the FIFO configuration for an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFIFOAddress is the starting address for the FIFO.
//! \param ulFIFOSize is the size of the FIFO in bytes.
//! \param ulFlags specifies what information to set in the FIFO configuration.
//!
//! This function will set the starting FIFO RAM address and size of the FIFO
//! for a given endpoint. Endpoint zero does not have a dynamically
//! configurable FIFO so this function should not be called for endpoint zero.
//! The \e ulFIFOSize parameter should be one of the values in the
//! \b USB_FIFO_SZ_ values. If the endpoint is going to use double buffering
//! it should use the values with the \b _DB at the end of the value. For
//! example, use \b USB_FIFO_SZ_16_DB to configure an endpoint to have a 16
//! byte double buffered FIFO. If a double buffered FIFO is used, then the
//! actual size of the FIFO will be twice the size indicated by the
//! \e ulFIFOSize parameter. This means that the \b USB_FIFO_SZ_16_DB value
//! will use 32 bytes of the USB controller's FIFO memory.
//!
//! The \e ulFIFOAddress value should be a multiple of 8 bytes and directly
//! indicates the starting address in the USB controller's FIFO RAM. For
//! example, a value of 64 indicates that the FIFO should start 64 bytes into
//! the USB controller's FIFO memory. The \e ulFlags value specifies whether
//! the endpoint's OUT or IN FIFO should be configured. If in host mode, use
//! \b USB_EP_HOST_OUT or \b USB_EP_HOST_IN, and if in device mode use
//! \b USB_EP_DEV_OUT or \b USB_EP_DEV_IN.
//!
//! \return None.
//
//*****************************************************************************
void
USBFIFOConfigSet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFIFOAddress, unsigned long ulFIFOSize,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
//
// See if the transmit or receive FIFO is being configured.
//
if(ulFlags & (USB_EP_HOST_OUT | USB_EP_DEV_IN))
{
//
// Set the transmit FIFO location and size for this endpoint.
//
USBIndexWrite(ulBase, ulEndpoint >> 4, USB_O_TXFIFOSZ, ulFIFOSize, 1);
USBIndexWrite(ulBase, ulEndpoint >> 4, USB_O_TXFIFOADD,
ulFIFOAddress >> 3, 2);
}
else
{
//
// Set the receive FIFO location and size for this endpoint.
//
USBIndexWrite(ulBase, ulEndpoint >> 4, USB_O_RXFIFOSZ, ulFIFOSize, 1);
USBIndexWrite(ulBase, ulEndpoint >> 4, USB_O_RXFIFOADD,
ulFIFOAddress >> 3, 2);
}
}
//*****************************************************************************
//
//! Returns the FIFO configuration for an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param pulFIFOAddress is the starting address for the FIFO.
//! \param pulFIFOSize is the size of the FIFO in bytes.
//! \param ulFlags specifies what information to retrieve from the FIFO
//! configuration.
//!
//! This function will return the starting address and size of the FIFO for a
//! given endpoint. Endpoint zero does not have a dynamically configurable
//! FIFO so this function should not be called for endpoint zero. The
//! \e ulFlags parameter specifies whether the endpoint's OUT or IN FIFO should
//! be read. If in host mode, the \e ulFlags parameter should be
//! \b USB_EP_HOST_OUT or \b USB_EP_HOST_IN, and if in device mode the
//! \e ulFlags parameter should be either \b USB_EP_DEV_OUT or
//! \b USB_EP_DEV_IN.
//!
//! \return None.
//
//*****************************************************************************
void
USBFIFOConfigGet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long *pulFIFOAddress, unsigned long *pulFIFOSize,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
//
// See if the transmit or receive FIFO is being configured.
//
if(ulFlags & (USB_EP_HOST_OUT | USB_EP_DEV_IN))
{
//
// Get the transmit FIFO location and size for this endpoint.
//
*pulFIFOAddress = (USBIndexRead(ulBase, ulEndpoint >> 4,
(unsigned long)USB_O_TXFIFOADD,
2)) << 3;
*pulFIFOSize = USBIndexRead(ulBase, ulEndpoint >> 4,
(unsigned long)USB_O_TXFIFOSZ, 1);
}
else
{
//
// Get the receive FIFO location and size for this endpoint.
//
*pulFIFOAddress = (USBIndexRead(ulBase, ulEndpoint >> 4,
(unsigned long)USB_O_RXFIFOADD,
2)) << 3;
*pulFIFOSize = USBIndexRead(ulBase, ulEndpoint >> 4,
(unsigned long)USB_O_RXFIFOSZ, 1);
}
}
//*****************************************************************************
//
//! Enable DMA on a given endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags specifies which direction and what mode to use when enabling
//! DMA.
//!
//! This function will enable DMA on a given endpoint and set the mode according
//! to the values in the \e ulFlags parameter. The \e ulFlags parameter should
//! have \b USB_EP_DEV_IN or \b USB_EP_DEV_OUT set.
//!
//! \return None.
//
//*****************************************************************************
void
USBEndpointDMAEnable(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// See if the transmit DMA is being enabled.
//
if(ulFlags & USB_EP_DEV_IN)
{
//
// Enable DMA on this end point.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRH1) |=
USB_TXCSRH1_DMAEN;
}
//
// See if the receive DMA is being enabled.
//
if(ulFlags & USB_EP_DEV_OUT)
{
//
// Enable DMA on this end point.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRH1) |=
USB_RXCSRH1_DMAEN;
}
}
//*****************************************************************************
//
//! Disable DMA on a given endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags specifies which direction to disable.
//!
//! This function will disable DMA on a given end point to allow non-DMA
//! USB transactions to generate interrupts normally. The ulFlags should be
//! \b USB_EP_DEV_IN or \b USB_EP_DEV_OUT all other bits are ignored.
//!
//! \return None.
//
//*****************************************************************************
void
USBEndpointDMADisable(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// If this was a reques to disable DMA on the IN portion of the end point
// then handle it.
//
if(ulFlags & USB_EP_DEV_IN)
{
//
// Just disable DMA leave the mode setting.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_TXCSRH1) &=
~USB_TXCSRH1_DMAEN;
}
//
// If this was a request to disable DMA on the OUT portion of the end point
// then handle it.
//
if(ulFlags & USB_EP_DEV_OUT)
{
//
// Just disable DMA leave the mode setting.
//
HWREGB(ulBase + EP_OFFSET(ulEndpoint) + USB_O_RXCSRH1) &=
~USB_RXCSRH1_DMAEN;
}
}
//*****************************************************************************
//
//! Determine the number of bytes of data available in a given endpoint's FIFO.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//!
//! This function will return the number of bytes of data currently available
//! in the FIFO for the given receive (OUT) endpoint. It may be used prior to
//! calling USBEndpointDataGet() to determine the size of buffer required to
//! hold the newly-received packet.
//!
//! \return This call will return the number of bytes available in a given
//! endpoint FIFO.
//
//*****************************************************************************
unsigned long
USBEndpointDataAvail(unsigned long ulBase, unsigned long ulEndpoint)
{
unsigned long ulRegister;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Get the address of the receive status register to use, based on the
// endpoint.
//
if(ulEndpoint == USB_EP_0)
{
ulRegister = USB_O_CSRL0;
}
else
{
ulRegister = USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint);
}
//
// Is there a packet ready in the FIFO?
//
if((HWREGH(ulBase + ulRegister) & USB_CSRL0_RXRDY) == 0)
{
return(0);
}
//
// Return the byte count in the FIFO.
//
return(HWREGH(ulBase + USB_O_COUNT0 + ulEndpoint));
}
//*****************************************************************************
//
//! Retrieves data from the given endpoint's FIFO.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param pucData is a pointer to the data area used to return the data from
//! the FIFO.
//! \param pulSize is initially the size of the buffer passed into this call
//! via the \e pucData parameter. It will be set to the amount of data
//! returned in the buffer.
//!
//! This function will return the data from the FIFO for the given endpoint.
//! The \e pulSize parameter should indicate the size of the buffer passed in
//! the \e pulData parameter. The data in the \e pulSize parameter will be
//! changed to match the amount of data returned in the \e pucData parameter.
//! If a zero byte packet was received this call will not return a error but
//! will instead just return a zero in the \e pulSize parameter. The only
//! error case occurs when there is no data packet available.
//!
//! \return This call will return 0, or -1 if no packet was received.
//
//*****************************************************************************
long
USBEndpointDataGet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned char *pucData, unsigned long *pulSize)
{
unsigned long ulRegister, ulByteCount, ulFIFO;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Get the address of the receive status register to use, based on the
// endpoint.
//
if(ulEndpoint == USB_EP_0)
{
ulRegister = USB_O_CSRL0;
}
else
{
ulRegister = USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint);
}
//
// Don't allow reading of data if the RxPktRdy bit is not set.
//
if((HWREGH(ulBase + ulRegister) & USB_CSRL0_RXRDY) == 0)
{
//
// Can't read the data because none is available.
//
*pulSize = 0;
//
// Return a failure since there is no data to read.
//
return(-1);
}
//
// Get the byte count in the FIFO.
//
ulByteCount = HWREGH(ulBase + USB_O_COUNT0 + ulEndpoint);
//
// Determine how many bytes we will actually copy.
//
ulByteCount = (ulByteCount < *pulSize) ? ulByteCount : *pulSize;
//
// Return the number of bytes we are going to read.
//
*pulSize = ulByteCount;
//
// Calculate the FIFO address.
//
ulFIFO = ulBase + USB_O_FIFO0 + (ulEndpoint >> 2);
//
// Read the data out of the FIFO.
//
for(; ulByteCount > 0; ulByteCount--)
{
//
// Read a byte at a time from the FIFO.
//
*pucData++ = HWREGB(ulFIFO);
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Acknowledge that data was read from the given endpoint's FIFO in device
//! mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param bIsLastPacket indicates if this is the last packet.
//!
//! This function acknowledges that the data was read from the endpoint's FIFO.
//! The \e bIsLastPacket parameter is set to a \b true value if this is the
//! last in a series of data packets on endpoint zero. The \e bIsLastPacket
//! parameter is not used for endpoints other than endpoint zero. This call
//! can be used if processing is required between reading the data and
//! acknowledging that the data has been read.
//!
//! \note This function should only be called in device mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBDevEndpointDataAck(unsigned long ulBase, unsigned long ulEndpoint,
tBoolean bIsLastPacket)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Determine which endpoint is being acked.
//
if(ulEndpoint == USB_EP_0)
{
//
// Clear RxPktRdy, and optionally DataEnd, on endpoint zero.
//
HWREGB(ulBase + USB_O_CSRL0) =
USB_CSRL0_RXRDYC | (bIsLastPacket ? USB_CSRL0_DATAEND : 0);
}
else
{
//
// Clear RxPktRdy on all other endpoints.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(USB_RXCSRL1_RXRDY);
}
}
//*****************************************************************************
//
//! Acknowledge that data was read from the given endpoint's FIFO in host
//! mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//!
//! This function acknowledges that the data was read from the endpoint's FIFO.
//! This call is used if processing is required between reading the data and
//! acknowledging that the data has been read.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostEndpointDataAck(unsigned long ulBase, unsigned long ulEndpoint)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Clear RxPktRdy.
//
if(ulEndpoint == USB_EP_0)
{
HWREGB(ulBase + USB_O_CSRL0) &= ~USB_CSRL0_RXRDY;
}
else
{
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &=
~(USB_RXCSRL1_RXRDY);
}
}
//*****************************************************************************
//
//! Puts data into the given endpoint's FIFO.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param pucData is a pointer to the data area used as the source for the
//! data to put into the FIFO.
//! \param ulSize is the amount of data to put into the FIFO.
//!
//! This function will put the data from the \e pucData parameter into the FIFO
//! for this endpoint. If a packet is already pending for transmission then
//! this call will not put any of the data into the FIFO and will return -1.
//! Care should be taken to not write more data than can fit into the FIFO
//! allocated by the call to USBFIFOConfig().
//!
//! \return This call will return 0 on success, or -1 to indicate that the FIFO
//! is in use and cannot be written.
//
//*****************************************************************************
long
USBEndpointDataPut(unsigned long ulBase, unsigned long ulEndpoint,
unsigned char *pucData, unsigned long ulSize)
{
unsigned long ulFIFO;
unsigned char ucTxPktRdy;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Get the bit position of TxPktRdy based on the endpoint.
//
if(ulEndpoint == USB_EP_0)
{
ucTxPktRdy = USB_CSRL0_TXRDY;
}
else
{
ucTxPktRdy = USB_TXCSRL1_TXRDY;
}
//
// Don't allow transmit of data if the TxPktRdy bit is already set.
//
if(HWREGB(ulBase + USB_O_CSRL0 + ulEndpoint) & ucTxPktRdy)
{
return(-1);
}
//
// Calculate the FIFO address.
//
ulFIFO = ulBase + USB_O_FIFO0 + (ulEndpoint >> 2);
//
// Write the data to the FIFO.
//
for(; ulSize > 0; ulSize--)
{
HWREGB(ulFIFO) = *pucData++;
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Starts the transfer of data from an endpoint's FIFO.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulTransType is set to indicate what type of data is being sent.
//!
//! This function will start the transfer of data from the FIFO for a given
//! endpoint. This is necessary if the \b USB_EP_AUTO_SET bit was not enabled
//! for the endpoint. Setting the \e ulTransType parameter will allow the
//! appropriate signaling on the USB bus for the type of transaction being
//! requested. The \e ulTransType parameter should be one of the following:
//!
//! - USB_TRANS_OUT for OUT transaction on any endpoint in host mode.
//! - USB_TRANS_IN for IN transaction on any endpoint in device mode.
//! - USB_TRANS_IN_LAST for the last IN transactions on endpoint zero in a
//! sequence of IN transactions.
//! - USB_TRANS_SETUP for setup transactions on endpoint zero.
//! - USB_TRANS_STATUS for status results on endpoint zero.
//!
//! \return This call will return 0 on success, or -1 if a transmission is
//! already in progress.
//
//*****************************************************************************
long
USBEndpointDataSend(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulTransType)
{
unsigned long ulTxPktRdy;
//
// CHeck the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Get the bit position of TxPktRdy based on the endpoint.
//
if(ulEndpoint == USB_EP_0)
{
ulTxPktRdy = ulTransType & 0xff;
}
else
{
ulTxPktRdy = (ulTransType >> 8) & 0xff;
}
//
// Don't allow transmit of data if the TxPktRdy bit is already set.
//
if(HWREGB(ulBase + USB_O_CSRL0 + ulEndpoint) & USB_CSRL0_TXRDY)
{
return(-1);
}
//
// Set TxPktRdy in order to send the data.
//
HWREGB(ulBase + USB_O_CSRL0 + ulEndpoint) = ulTxPktRdy;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Forces a flush of an endpoint's FIFO.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags specifies if the IN or OUT endpoint should be accessed.
//!
//! This function will force the controller to flush out the data in the FIFO.
//! The function can be called with either host or device controllers and
//! requires the \e ulFlags parameter be one of \b USB_EP_HOST_OUT,
//! \b USB_EP_HOST_IN, \b USB_EP_DEV_OUT, or \b USB_EP_DEV_IN.
//!
//! \return None.
//
//*****************************************************************************
void
USBFIFOFlush(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Endpoint zero has a different register set for FIFO flushing.
//
if(ulEndpoint == USB_EP_0)
{
//
// Nothing in the FIFO if neither of these bits are set.
//
if((HWREGB(ulBase + USB_O_CSRL0) &
(USB_CSRL0_RXRDY | USB_CSRL0_TXRDY)) != 0)
{
//
// Hit the Flush FIFO bit.
//
HWREGB(ulBase + USB_O_CSRH0) = USB_CSRH0_FLUSH;
}
}
else
{
//
// Only reset the IN or OUT FIFO.
//
if(ulFlags & (USB_EP_HOST_IN | USB_EP_DEV_OUT))
{
//
// Nothing in the FIFO if neither of these bits are set.
//
if((HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) &
USB_RXCSRL1_RXRDY) == 0)
{
//
// Hit the Flush FIFO bit.
//
HWREGB(ulBase + USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_RXCSRL1_FLUSH;
}
}
else
{
if((HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) &
USB_TXCSRL1_TXRDY) == 0)
{
//
// Hit the Flush FIFO bit.
//
HWREGB(ulBase + USB_O_TXCSRL1 + EP_OFFSET(ulEndpoint)) |=
USB_TXCSRL1_FLUSH;
}
}
}
}
//*****************************************************************************
//
//! Schedules a request for an IN transaction on an endpoint in host mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//!
//! This function will schedule a request for an IN transaction. When the USB
//! device being communicated with responds the data, the data can be retrieved
//! by calling USBEndpointDataGet() or via a DMA transfer.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostRequestIN(unsigned long ulBase, unsigned long ulEndpoint)
{
unsigned long ulRegister;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// Endpoint zero uses a different offset than the other endpoints.
//
if(ulEndpoint == USB_EP_0)
{
ulRegister = USB_O_CSRL0;
}
else
{
ulRegister = USB_O_RXCSRL1 + EP_OFFSET(ulEndpoint);
}
//
// Set the request for an IN transaction.
//
HWREGB(ulBase + ulRegister) = USB_RXCSRL1_REQPKT;
}
//*****************************************************************************
//
//! Issues a request for a status IN transaction on endpoint zero.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function is used to cause a request for an status IN transaction from
//! a device on endpoint zero. This function can only be used with endpoint
//! zero as that is the only control endpoint that supports this ability. This
//! is used to complete the last phase of a control transaction to a device and
//! an interrupt will be signaled when the status packet has been received.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostRequestStatus(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Set the request for a status IN transaction.
//
HWREGB(ulBase + USB_O_CSRL0) = USB_CSRL0_REQPKT | USB_CSRL0_STATUS;
}
//*****************************************************************************
//
//! Sets the functional address for the device that is connected to an
//! endpoint in host mode.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulAddr is the functional address for the controller to use for this
//! endpoint.
//! \param ulFlags determines if this is an IN or an OUT endpoint.
//!
//! This function will set the functional address for a device that is using
//! this endpoint for communication. This \e ulAddr parameter is the address
//! of the target device that this endpoint will be used to communicate with.
//! The \e ulFlags parameter indicates if the IN or OUT endpoint should be set.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostAddrSet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulAddr, unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// See if the transmit or receive address should be set.
//
if(ulFlags & USB_EP_HOST_OUT)
{
//
// Set the transmit address.
//
HWREGB(ulBase + USB_O_TXFUNCADDR0 + (ulEndpoint >> 1)) = ulAddr;
}
else
{
//
// Set the receive address.
//
HWREGB(ulBase + USB_O_TXFUNCADDR0 + 4 + (ulEndpoint >> 1)) = ulAddr;
}
}
//*****************************************************************************
//
//! Gets the current functional device address for an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags determines if this is an IN or an OUT endpoint.
//!
//! This function returns the current functional address that an endpoint is
//! using to communicate with a device. The \e ulFlags parameter determines if
//! the IN or OUT endpoint's device address is returned.
//!
//! \note This function should only be called in host mode.
//!
//! \return Returns the current function address being used by an endpoint.
//
//*****************************************************************************
unsigned long
USBHostAddrGet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// See if the transmit or receive address should be returned.
//
if(ulFlags & USB_EP_HOST_OUT)
{
//
// Return this endpoint's transmit address.
//
return(HWREGB(ulBase + USB_O_TXFUNCADDR0 + (ulEndpoint >> 1)));
}
else
{
//
// Return this endpoint's receive address.
//
return(HWREGB(ulBase + USB_O_TXFUNCADDR0 + 4 + (ulEndpoint >> 1)));
}
}
//*****************************************************************************
//
//! Set the hub address for the device that is connected to an endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulAddr is the hub address for the device using this endpoint.
//! \param ulFlags determines if this is an IN or an OUT endpoint.
//!
//! This function will set the hub address for a device that is using this
//! endpoint for communication. The \e ulFlags parameter determines if the
//! device address for the IN or the OUT endpoint is set by this call.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostHubAddrSet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulAddr, unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// See if the hub transmit or receive address is being set.
//
if(ulFlags & USB_EP_HOST_OUT)
{
//
// Set the hub transmit address for this endpoint.
//
HWREGB(ulBase + USB_O_TXHUBADDR0 + (ulEndpoint >> 1)) = ulAddr;
}
else
{
//
// Set the hub receive address for this endpoint.
//
HWREGB(ulBase + USB_O_TXHUBADDR0 + 4 + (ulEndpoint >> 1)) = ulAddr;
}
}
//*****************************************************************************
//
//! Get the current device hub address for this endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint is the endpoint to access.
//! \param ulFlags determines if this is an IN or an OUT endpoint.
//!
//! This function will return the current hub address that an endpoint is using
//! to communicate with a device. The \e ulFlags parameter determines if the
//! device address for the IN or OUT endpoint is returned.
//!
//! \note This function should only be called in host mode.
//!
//! \return This function returns the current hub address being used by an
//! endpoint.
//
//*****************************************************************************
unsigned long
USBHostHubAddrGet(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_0) || (ulEndpoint == USB_EP_1) ||
(ulEndpoint == USB_EP_2) || (ulEndpoint == USB_EP_3) ||
(ulEndpoint == USB_EP_4) || (ulEndpoint == USB_EP_5) ||
(ulEndpoint == USB_EP_6) || (ulEndpoint == USB_EP_7) ||
(ulEndpoint == USB_EP_8) || (ulEndpoint == USB_EP_9) ||
(ulEndpoint == USB_EP_10) || (ulEndpoint == USB_EP_11) ||
(ulEndpoint == USB_EP_12) || (ulEndpoint == USB_EP_13) ||
(ulEndpoint == USB_EP_14) || (ulEndpoint == USB_EP_15));
//
// See if the hub transmit or receive address should be returned.
//
if(ulFlags & USB_EP_HOST_OUT)
{
//
// Return the hub transmit address for this endpoint.
//
return(HWREGB(ulBase + USB_O_TXHUBADDR0 + (ulEndpoint >> 1)));
}
else
{
//
// Return the hub receive address for this endpoint.
//
return(HWREGB(ulBase + USB_O_TXHUBADDR0 + 4 + (ulEndpoint >> 1)));
}
}
//*****************************************************************************
//
//! Sets the configuration for USB power fault.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulFlags specifies the configuration of the power fault.
//!
//! This function will set the behavior of the USB controller during a power
//! fault and the behavior of the USBPEN pin. The flags specify the power
//! fault level sensitivity, the power fault action, and the power enable level
//! and source. One of the following can be selected as the power fault level
//! sensitivity:
//!
//! - \b USB_HOST_PWRFLT_LOW - Power fault is indicated by the pin being driven
//! low.
//! - \b USB_HOST_PWRFLT_HIGH - Power fault is indicated by the pin being
//! driven! high.
//!
//! One of the following can be selected as the power fault action:
//!
//! - \b USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault
//! detected.
//! - \b USB_HOST_PWRFLT_EP_TRI - Automatically Tri-state the USBEPEN pin on a
//! power fault.
//! - \b USB_HOST_PWRFLT_EP_LOW - Automatically drive USBEPEN pin low on a
//! power fault.
//! - \b USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBEPEN pin high on a
//! power fault.
//!
//! One of the following can be selected as the power enable level and source:
//!
//! - \b USB_HOST_PWREN_LOW - USBEPEN is driven low when power is enabled.
//! - \b USB_HOST_PWREN_HIGH - USBEPEN is driven high when power is enabled.
//! - \b USB_HOST_PWREN_VBLOW - USBEPEN is driven high when VBUS is low.
//! - \b USB_HOST_PWREN_VBHIGH - USBEPEN is driven high when VBUS is high.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostPwrFaultConfig(unsigned long ulBase, unsigned long ulFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulFlags & ~(USB_EPC_PFLTACT_M | USB_EPC_PFLTAEN |
USB_EPC_PFLTSEN_HIGH | USB_EPC_EPEN_M)) == 0);
//
// Set the power fault configuration as specified. This will not change
// whether fault detection is enabled or not.
//
HWREGH(ulBase + USB_O_EPC) =
(ulFlags | (HWREGH(ulBase + USB_O_EPC) &
~(USB_EPC_PFLTACT_M | USB_EPC_PFLTAEN |
USB_EPC_PFLTSEN_HIGH | USB_EPC_EPEN_M)));
}
//*****************************************************************************
//
//! Enables power fault detection.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function enables power fault detection in the USB controller. If the
//! USBPFLT pin is not in use this function should not be used.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostPwrFaultEnable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Enable power fault input.
//
HWREGH(ulBase + USB_O_EPC) |= USB_EPC_PFLTEN;
}
//*****************************************************************************
//
//! Disables power fault detection.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function disables power fault detection in the USB controller.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostPwrFaultDisable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Enable power fault input.
//
HWREGH(ulBase + USB_O_EPC) &= ~USB_EPC_PFLTEN;
}
//*****************************************************************************
//
//! Enables the external power pin.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function enables the USBEPEN signal to enable an external power supply
//! in host mode operation.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostPwrEnable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Enable the external power suppply enable signal.
//
HWREGH(ulBase + USB_O_EPC) |= USB_EPC_EPENDE;
}
//*****************************************************************************
//
//! Disables the external power pin.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function disables the USBEPEN signal to disable an external power
//! supply in host mode operation.
//!
//! \note This function should only be called in host mode.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostPwrDisable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Disable the external power supply enable signal.
//
HWREGH(ulBase + USB_O_EPC) &= ~USB_EPC_EPENDE;
}
//*****************************************************************************
//
//! Get the current frame number.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function returns the last frame number received.
//!
//! \return The last frame number received.
//
//*****************************************************************************
unsigned long
USBFrameNumberGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Return the most recent frame number.
//
return(HWREGH(ulBase + USB_O_FRAME));
}
//*****************************************************************************
//
//! Starts or ends a session.
//!
//! \param ulBase specifies the USB module base address.
//! \param bStart specifies if this call starts or ends a session.
//!
//! This function is used in OTG mode to start a session request or end a
//! session. If the \e bStart parameter is set to \b true, then this function
//! start a session and if it is \b false it will end a session.
//!
//! \return None.
//
//*****************************************************************************
void
USBOTGSessionRequest(unsigned long ulBase, tBoolean bStart)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Start or end the session as directed.
//
if(bStart)
{
HWREGB(ulBase + USB_O_DEVCTL) |= USB_DEVCTL_SESSION;
}
else
{
HWREGB(ulBase + USB_O_DEVCTL) &= ~USB_DEVCTL_SESSION;
}
}
//*****************************************************************************
//
//! Returns the absolute FIFO address for a given endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies which endpoint's FIFO address to return.
//!
//! This function returns the actual physical address of the FIFO. This is
//! needed when the USB is going to be used with the uDMA controller and the
//! source or destination address needs to be set to the physical FIFO address
//! for a given endpoint.
//!
//! \return None.
//
//*****************************************************************************
unsigned long
USBFIFOAddrGet(unsigned long ulBase, unsigned long ulEndpoint)
{
//
// Return the FIFO address for this endpoint.
//
return(ulBase + USB_O_FIFO0 + (ulEndpoint >> 2));
}
//*****************************************************************************
//
//! Returns the current operating mode of the controller.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function returns the current operating mode on USB controllers with
//! OTG or Dual mode functionality.
//!
//! For OTG controllers:
//!
//! The function will return on of the following values on OTG controllers:
//! \b USB_OTG_MODE_ASIDE_HOST, \b USB_OTG_MODE_ASIDE_DEV,
//! \b USB_OTG_MODE_BSIDE_HOST, \b USB_OTG_MODE_BSIDE_DEV,
//! \b USB_OTG_MODE_NONE.
//!
//! \b USB_OTG_MODE_ASIDE_HOST indicates that the controller is in host mode
//! on the A-side of the cable.
//!
//! \b USB_OTG_MODE_ASIDE_DEV indicates that the controller is in device mode
//! on the A-side of the cable.
//!
//! \b USB_OTG_MODE_BSIDE_HOST indicates that the controller is in host mode
//! on the B-side of the cable.
//!
//! \b USB_OTG_MODE_BSIDE_DEV indicates that the controller is in device mode
//! on the B-side of the cable. If and OTG session request is started with no
//! cable in place this is the default mode for the controller.
//!
//! \b USB_OTG_MODE_NONE indicates that the controller is not attempting to
//! determine its role in the system.
//!
//! For Dual Mode controllers:
//!
//! The function will return on of the following values:
//! \b USB_DUAL_MODE_HOST, \b USB_DUAL_MODE_DEVICE, or
//! \b USB_DUAL_MODE_NONE.
//!
//! \b USB_DUAL_MODE_HOST indicates that the controller is acting as a host.
//!
//! \b USB_DUAL_MODE_DEVICE indicates that the controller acting as a device.
//!
//! \b USB_DUAL_MODE_NONE indicates that the controller is not active as
//! either a host or device.
//!
//! \return Returns \b USB_OTG_MODE_ASIDE_HOST, \b USB_OTG_MODE_ASIDE_DEV,
//! \b USB_OTG_MODE_BSIDE_HOST, \b USB_OTG_MODE_BSIDE_DEV,
//! \b USB_OTG_MODE_NONE, \b USB_DUAL_MODE_HOST, \b USB_DUAL_MODE_DEVICE, or
//! \b USB_DUAL_MODE_NONE.
//
//*****************************************************************************
unsigned long
USBModeGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Checks the current mode in the USB_O_DEVCTL and returns the current
// mode.
//
// USB_OTG_MODE_ASIDE_HOST: USB_DEVCTL_HOST | USB_DEVCTL_SESSION
// USB_OTG_MODE_ASIDE_DEV: USB_DEVCTL_SESSION
// USB_OTG_MODE_BSIDE_HOST: USB_DEVCTL_DEV | USB_DEVCTL_SESSION |
// USB_DEVCTL_HOST
// USB_OTG_MODE_BSIDE_DEV: USB_DEVCTL_DEV | USB_DEVCTL_SESSION
// USB_OTG_MODE_NONE: USB_DEVCTL_DEV
//
return(HWREGB(ulBase + USB_O_DEVCTL) &
(USB_DEVCTL_DEV | USB_DEVCTL_HOST | USB_DEVCTL_SESSION |
USB_DEVCTL_VBUS_M));
}
//*****************************************************************************
//
//! Sets the DMA channel to use for a given endpoint.
//!
//! \param ulBase specifies the USB module base address.
//! \param ulEndpoint specifies which endpoint's FIFO address to return.
//! \param ulChannel specifies which DMA channel to use for which endpoint.
//!
//! This function is used to configure which DMA channel to use with a given
//! endpoint. Receive DMA channels can only be used with receive endpoints
//! and transmit DMA channels can only be used with transmit endpoints. This
//! allows the 3 receive and 3 transmit DMA channels to be mapped to any
//! endpoint other than 0. The values that should be passed into the \e
//! ulChannel value are the UDMA_CHANNEL_USBEP* values defined in udma.h.
//!
//! \note This function only has an effect on microcontrollers that have the
//! ability to change the DMA channel for an endpoint. Calling this function
//! on other devices will have no effect.
//!
//! \return None.
//!
//*****************************************************************************
void
USBEndpointDMAChannel(unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulChannel)
{
unsigned long ulMask;
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
ASSERT((ulEndpoint == USB_EP_1) || (ulEndpoint == USB_EP_2) ||
(ulEndpoint == USB_EP_3) || (ulEndpoint == USB_EP_4) ||
(ulEndpoint == USB_EP_5) || (ulEndpoint == USB_EP_6) ||
(ulEndpoint == USB_EP_7) || (ulEndpoint == USB_EP_8) ||
(ulEndpoint == USB_EP_9) || (ulEndpoint == USB_EP_10) ||
(ulEndpoint == USB_EP_11) || (ulEndpoint == USB_EP_12) ||
(ulEndpoint == USB_EP_13) || (ulEndpoint == USB_EP_14) ||
(ulEndpoint == USB_EP_15));
ASSERT(ulChannel <= UDMA_CHANNEL_USBEP3TX);
//
// The input select mask needs to be shifted into the correct position
// based on the channel.
//
ulMask = 0xf << (ulChannel * 4);
//
// Clear out the current selection for the channel.
//
ulMask = HWREG(ulBase + USB_O_EPS) & (~ulMask);
//
// The input select is now shifted into the correct position based on the
// channel.
//
ulMask |= (USB_EP_TO_INDEX(ulEndpoint)) << (ulChannel * 4);
//
// Write the value out to the register.
//
HWREG(ulBase + USB_O_EPS) = ulMask;
}
//*****************************************************************************
//
//! Change the mode of the USB controller to host.
//!
//! \param ulBase specifies the USB module base address.
//!
//! This function changes the mode of the USB controller to host mode. This
//! is only valid on microcontrollers that have the host and device
//! capabilities and not the OTG capabilities.
//!
//! \return None.
//
//*****************************************************************************
void
USBHostMode(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == USB0_BASE);
//
// Set the USB controller mode to host.
//
HWREGB(ulBase + USB_O_GPCS) &= ~(USB_GPCS_DEVMOD);
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************