rt-thread-official/bsp/ck802/libraries/common/sha/ck_sha.c

539 lines
14 KiB
C
Raw Normal View History

2018-06-05 14:36:29 +08:00
/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file ck_sha.c
* @brief CSI Source File for SHA Driver
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include "csi_core.h"
#include "drv_sha.h"
#include "ck_sha.h"
typedef struct {
uint32_t base;
uint32_t irq;
sha_event_cb_t cb;
sha_status_t status;
sha_mode_e mode;
sha_endian_mode_e endian;
} ck_sha_priv_t;
static ck_sha_priv_t sha_handle[CONFIG_SHA_NUM];
bool finish_flag = 0;
/* Driver Capabilities */
static const sha_capabilities_t driver_capabilities = {
.sha1 = 1, /* sha1 mode */
.sha224 = 1, /* sha224 mode */
.sha256 = 1, /* sha256 mode */
.sha384 = 1, /* sha384 mode */
.sha512 = 1, /* sha512 mode */
.sha512_224 = 1, /* sha512_224 mode */
.sha512_256 = 1, /* sha512_256 mode */
.endianmode = 1, /* endian mode */
.interruptmode = 1 /* interrupt mode */
};
#define ERR_SHA(errno) (CSI_DRV_ERRNO_SHA_BASE | errno)
#define SHA_NULL_PARAM_CHK(para) \
do { \
if (para == NULL) { \
return ERR_SHA(EDRV_PARAMETER); \
} \
} while (0)
//
// Functions
//
ck_sha_reg_t *sha_reg = NULL;
volatile static uint8_t sha_int_flag = 1;
static int32_t sha_set_mode(sha_mode_e mode)
{
sha_reg->SHA_CON = mode;
return 0;
}
static int32_t sha_enable_interrupt(void)
{
sha_reg->SHA_CON |= 1 << SHA_INT_ENABLE_OFFSET;
return 0;
}
static int32_t sha_disable_interrupt(void)
{
sha_reg->SHA_CON &= ~(1 << SHA_INT_ENABLE_OFFSET);
return 0;
}
static void sha_clear_interrupt(void)
{
sha_reg->SHA_INTSTATE = 0;
}
static int32_t sha_enable_initial(void)
{
sha_reg->SHA_CON |= 1 << SHA_INIT_OFFSET;
return 0;
}
static int32_t sha_enable_calculate(void)
{
sha_reg->SHA_CON |= 1 << SHA_CAL_OFFSET;
return 0;
}
static int32_t sha_select_endian_mode(sha_endian_mode_e mode)
{
sha_reg->SHA_CON |= mode << SHA_ENDIAN_OFFSET;
return 0;
}
static int32_t sha_input_data(uint32_t *data, uint32_t length)
{
uint8_t i;
uint32_t *input_data = (uint32_t *) & (sha_reg->SHA_DATA1);
for (i = 0; i < length; i++) {
*(input_data + i) = *(data + i);
}
return 0;
}
static int32_t sha_get_data(sha_handle_t handle, uint32_t *data)
{
ck_sha_priv_t *sha_priv = handle;
uint8_t len;
uint8_t i;
uint32_t *result = (uint32_t *)&sha_reg->SHA_H0L;
/* according to different mode to obtain the hash result */
if (sha_priv->mode == SHA_MODE_1 || sha_priv->mode == SHA_MODE_224 || sha_priv->mode == SHA_MODE_256) {
if (sha_priv->mode == SHA_MODE_1) {
len = 5;
} else if (sha_priv->mode == SHA_MODE_224) {
len = 7;
} else if (sha_priv->mode == SHA_MODE_256) {
len = 8;
}
for (i = 0; i < len; i++) {
data[i] = *(result + i);
}
} else {
if (sha_priv->mode == SHA_MODE_384) {
len = 6;
} else if (sha_priv->mode == SHA_MODE_512) {
len = 8;
}
uint32_t *resulth = (uint32_t *)&sha_reg->SHA_H0H;
for (i = 0; i < len; i++) {
data[i << 1] = *(resulth + i);
data[(i << 1) + 1] = *(result + i);
}
}
return 0;
}
static inline void sha_reverse_order(uint8_t *pdata, int32_t length)
{
uint8_t input_data[length];
uint8_t result[length];
uint32_t tmp = 0;
int32_t i = 0;
memcpy((void *)input_data, (void *)pdata, length);
for (i = 0; i < length; i++) {
tmp = i >> 2;
tmp = tmp << 3;
result[i] = input_data[tmp + 3 - i];
}
memcpy((void *)pdata, (void *)result, length);
}
void ck_sha_irqhandler(int32_t idx)
{
sha_int_flag = 0;
sha_clear_interrupt(); //clear sha interrupt
ck_sha_priv_t *sha_priv = &sha_handle[idx];
if (finish_flag != 0) {
if (sha_priv->cb != NULL) {
sha_priv->cb(SHA_EVENT_COMPLETE); //execute the callback function
}
}
}
int32_t __attribute__((weak)) target_get_sha_count(void)
{
return 0;
}
int32_t __attribute__((weak)) target_get_sha(int32_t idx, uint32_t *base, uint32_t *irq)
{
return NULL;
}
/**
\brief get sha handle count.
\return sha handle count
*/
int32_t csi_sha_get_instance_count(void)
{
return target_get_sha_count();
}
/**
\brief Initialize SHA Interface. 1. Initializes the resources needed for the SHA interface 2.registers event callback function
\param[in] idx must not exceed return value of csi_sha_get_instance_count()
\param[in] cb_event Pointer to \ref sha_event_cb_t
\return return sha handle if success
*/
sha_handle_t csi_sha_initialize(int32_t idx, sha_event_cb_t cb_event)
{
if (idx < 0 || idx >= CONFIG_SHA_NUM) {
return NULL;
}
uint32_t base = 0u;
uint32_t irq;
/* obtain the sha information */
int32_t real_idx = target_get_sha(idx, &base, &irq);
if (real_idx != idx) {
return NULL;
}
ck_sha_priv_t *sha_priv = &sha_handle[idx];
sha_priv->base = base;
sha_priv->irq = irq;
/* initialize the sha context */
sha_priv->cb = cb_event;
sha_priv->status.busy = 0;
drv_nvic_enable_irq(sha_priv->irq);
return (sha_handle_t)sha_priv;
}
/**
\brief De-initialize SHA Interface. stops operation and releases the software resources used by the interface
\param[in] handle sha handle to operate.
\return error code
*/
int32_t csi_sha_uninitialize(sha_handle_t handle)
{
SHA_NULL_PARAM_CHK(handle);
ck_sha_priv_t *sha_priv = handle;
sha_priv->cb = NULL;
sha_disable_interrupt();
drv_nvic_disable_irq(sha_priv->irq);
return 0;
}
/**
\brief Get driver capabilities.
\param[in] handle sha handle to operate.
\return \ref sha_capabilities_t
*/
sha_capabilities_t csi_sha_get_capabilities(sha_handle_t handle)
{
return driver_capabilities;
}
/**
\brief config sha mode.
\param[in] handle sha handle to operate.
\param[in] mode \ref sha_mode_e
\param[in] endian \ref sha_endian_mode_e
\return error code
*/
int32_t csi_sha_config(sha_handle_t handle, sha_mode_e mode, sha_endian_mode_e endian_mode)
{
SHA_NULL_PARAM_CHK(handle);
ck_sha_priv_t *sha_priv = handle;
sha_reg = (ck_sha_reg_t *)(sha_priv->base);
/* config the sha mode */
switch (mode) {
case SHA_MODE_512_256:
case SHA_MODE_512_224:
return ERR_SHA(EDRV_UNSUPPORTED);
case SHA_MODE_1:
case SHA_MODE_224:
case SHA_MODE_256:
case SHA_MODE_384:
case SHA_MODE_512:
sha_priv->mode = mode;
break;
default:
return ERR_SHA(EDRV_PARAMETER);
}
sha_set_mode(mode);
/*config the sha endian mode */
if (endian_mode == SHA_ENDIAN_MODE_LITTLE) {
sha_priv->endian = endian_mode;
sha_select_endian_mode(endian_mode);
} else if (endian_mode == SHA_ENDIAN_MODE_BIG) {
sha_priv->endian = endian_mode;
sha_select_endian_mode(endian_mode);
} else {
return ERR_SHA(EDRV_PARAMETER);
}
sha_enable_interrupt();
return 0;
}
/**
\brief start the engine
\param[in] handle sha handle to operate.
\param[in] context Pointer to the sha context.
\return error code
*/
int32_t csi_sha_starts(sha_handle_t handle, void *context)
{
SHA_NULL_PARAM_CHK(handle);
ck_sha_priv_t *sha_priv = handle;
sha_enable_initial();
sha_priv->status.busy = 1;
return 0;
}
/**
\brief updata the engine
\param[in] handle sha handle to operate.
\param[in] context Pointer to the sha context.
\param[in] input Pointer to the Source data
\param[in] len the data len
\return error code
*/
static uint8_t sha_buffer[128];
static uint32_t total[2] = {0x0};
static uint32_t last_left = 0;
int32_t csi_sha_update(sha_handle_t handle, void *context, const void *input, uint32_t len)
{
SHA_NULL_PARAM_CHK(handle);
SHA_NULL_PARAM_CHK(input);
if (len <= 0) {
return ERR_SHA(EDRV_PARAMETER);
}
ck_sha_priv_t *sha_priv = handle;
sha_reg = (ck_sha_reg_t *)(sha_priv->base);
uint32_t block_size;
uint32_t left_len = 0;
if (sha_priv->mode < 4) {
block_size = 64;
left_len = len & 0x3f;
} else {
block_size = 128;
left_len = len & 0x7f;
}
uint32_t left = total[0] & (block_size - 1);
uint32_t fill = block_size - left;
total[0] += len;
total[0] &= 0xffffffff;
uint32_t word_left = total[0] & 0x3;
uint8_t *p = (uint8_t *)input;
/* when the text is not aligned by block and len > fill */
if (left && len >= fill) {
if (last_left && sha_priv->endian == SHA_ENDIAN_MODE_LITTLE) {
uint32_t i;
for (i = 0; i < 4 - last_left; i++) {
if (finish_flag) {
*(sha_buffer + 3 - last_left - i) = *((uint8_t *)p + 3 - last_left - i);
} else {
*(sha_buffer + left + 3 - last_left - i) = *((uint8_t *)p + 3 - last_left - i);
}
}
fill = fill - 4 + last_left;
p = (p + 4 - last_left);
}
if (last_left) {
memcpy((void *)(sha_buffer + left + 4 - last_left), p, fill);
} else {
memcpy((void *)(sha_buffer + left), p, fill);
}
/* set the input data */
sha_input_data((uint32_t *)sha_buffer, block_size >> 2);
sha_enable_calculate();
while (sha_int_flag);
sha_int_flag = 1;
p += fill;
len -= fill;
left = 0;
}
/* calculate the hash by block */
while (len >= block_size) {
sha_input_data((uint32_t *)p, block_size >> 2);
sha_enable_calculate();
while (sha_int_flag);
sha_int_flag = 1;
p += block_size;
len -= block_size;
}
/* when the text is not aligned by block and len < fill */
if (len > 0) {
if (sha_priv->endian == SHA_ENDIAN_MODE_BIG || word_left == 0) {
memcpy((void *)(sha_buffer + left), p, len);
} else {
memcpy((void *)(sha_buffer + left), p, len + 4 - word_left);
last_left = word_left;
}
}
sha_priv->status.busy = 0;
return 0;
}
static unsigned char sha_padding[128] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/**
\brief finish the engine
\param[in] handle sha handle to operate.
\param[in] context Pointer to the sha context.
\param[out] output Pointer to the dest data
\return error code
*/
static uint32_t total_length;
int32_t csi_sha_finish(sha_handle_t handle, void *context, void *output)
{
SHA_NULL_PARAM_CHK(handle);
SHA_NULL_PARAM_CHK(output);
ck_sha_priv_t *sha_priv = handle;
uint32_t block_size;
if (sha_priv->mode < 4) {
block_size = 64;
} else {
block_size = 128;
}
total_length = total[0] << 3;
uint32_t last = total[0] & (block_size - 1);
uint32_t padn = (last < block_size) ? (block_size - last) : (block_size + block_size - last);
uint32_t left = total[0] & 0x3;
uint8_t temp_data[4];
uint32_t j;
/*calculate the final word*/
for (j = 0; j < 4; j++) {
temp_data[j] = (total_length >> (8 * j)) & 0xff;
}
/* group the final package according to the endian mode */
if (sha_priv->endian == SHA_ENDIAN_MODE_BIG) {
memset(sha_padding, 0x0, sizeof(sha_padding));
sha_padding[0] = 0x80;
for (j = 0; j < 4; j++) {
sha_padding[padn - 4 + j] = temp_data[3 - j];
}
} else {
memset(sha_padding, 0x0, sizeof(sha_padding));
sha_padding[3 - left] = 0x80;
for (j = 0; j < 4; j++) {
sha_padding[padn - 4 + j] = temp_data[j];
}
}
finish_flag = 1;
csi_sha_update(handle, NULL, sha_padding, padn);
/* get the hash result */
sha_get_data(handle, (uint32_t *)output);
uint8_t *p = output;
/* convert the data endian according the sha mode */
if (sha_priv->mode == SHA_MODE_1) {
sha_reverse_order(p, 20);
} else if (sha_priv->mode == SHA_MODE_224) {
sha_reverse_order(p, 28);
} else if (sha_priv->mode == SHA_MODE_256) {
sha_reverse_order(p, 32);
} else if (sha_priv->mode == SHA_MODE_512) {
sha_reverse_order(p, 64);
} else if (sha_priv->mode == SHA_MODE_384) {
sha_reverse_order(p, 48);
}
total[0] = 0;
memset(sha_buffer, 0, sizeof(sha_buffer));
memset(sha_padding, 0, sizeof(sha_padding));
last_left = 0;
finish_flag = 0;
return 0;
}
/**
\brief Get SHA status.
\param[in] handle sha handle to operate.
\return SHA status \ref sha_status_t
*/
sha_status_t csi_sha_get_status(sha_handle_t handle)
{
ck_sha_priv_t *sha_priv = handle;
return sha_priv->status;
}