rt-thread-official/bsp/renesas/ra8m1-ek/script/fsp.scat

986 lines
24 KiB
Plaintext
Raw Normal View History

#! armclang -mcpu=cortex-m4 --target=arm-arm-none-eabi -E -x c -I.
#include "memory_regions.scat"
; This scatter-file places the vector table, application code, data, stacks and heap at suitable addresses in the memory map.
#define ROM_REGISTERS_START 0x400
; Uncomment and set XIP_SECONDARY_SLOT_IMAGE to 1 below for the secondary XIP application image.
; #define XIP_SECONDARY_SLOT_IMAGE 1
#ifdef FLASH_BOOTLOADER_LENGTH
#define BL_FLASH_IMAGE_START (FLASH_APPLICATION_IMAGE_NUMBER == 1 ? FLASH_START + FLASH_BOOTLOADER_LENGTH + FLASH_BOOTLOADER_HEADER_LENGTH : \
FLASH_START + FLASH_BOOTLOADER_LENGTH + FLASH_BOOTLOADER_SCRATCH_LENGTH + FLASH_APPLICATION_S_LENGTH + FLASH_BOOTLOADER_HEADER_LENGTH)
#define BL_FLASH_IMAGE_END (BL_FLASH_IMAGE_START + FLASH_APPLICATION_S_LENGTH - FLASH_BOOTLOADER_HEADER_LENGTH)
#define BL_XIP_SECONDARY_FLASH_IMAGE_START (FLASH_BOOTLOADER_LENGTH + FLASH_APPLICATION_S_LENGTH + FLASH_BOOTLOADER_HEADER_LENGTH)
#define BL_XIP_SECONDARY_FLASH_IMAGE_END (BL_XIP_SECONDARY_FLASH_IMAGE_START + FLASH_APPLICATION_S_LENGTH - FLASH_BOOTLOADER_HEADER_LENGTH)
#define BL_FLASH_NS_START (FLASH_APPLICATION_NS_LENGTH == 0 ? BL_FLASH_IMAGE_END : \
BL_FLASH_IMAGE_START - FLASH_BOOTLOADER_HEADER_LENGTH + FLASH_APPLICATION_S_LENGTH)
#define BL_FLASH_NSC_START (FLASH_APPLICATION_NS_LENGTH == 0 ? BL_FLASH_IMAGE_END : \
BL_FLASH_NS_START - FLASH_APPLICATION_NSC_LENGTH)
#define BL_FLASH_NS_IMAGE_START (FLASH_APPLICATION_NS_LENGTH == 0 ? BL_FLASH_IMAGE_END : \
BL_FLASH_NS_START + FLASH_BOOTLOADER_HEADER_LENGTH_2)
#define BL_RAM_NS_START (FLASH_APPLICATION_NS_LENGTH == 0 ? RAM_START + RAM_LENGTH : \
RAM_START + RAM_LENGTH - RAM_APPLICATION_NS_LENGTH)
#define BL_RAM_NSC_START (FLASH_APPLICATION_NS_LENGTH == 0 ? RAM_START + RAM_LENGTH : \
BL_RAM_NS_START - RAM_APPLICATION_NSC_LENGTH)
#define BLN_FLASH_IMAGE_START (BL_FLASH_NS_IMAGE_START)
#define BLN_FLASH_IMAGE_END (FLASH_APPLICATION_NS_LENGTH == 0 ? BL_FLASH_IMAGE_END : \
BL_FLASH_NS_IMAGE_START + FLASH_APPLICATION_NS_LENGTH - FLASH_BOOTLOADER_HEADER_LENGTH_2)
#define FLASH_ORIGIN FLASH_START
#define LIMITED_FLASH_LENGTH FLASH_BOOTLOADER_LENGTH
#elif defined FLASH_IMAGE_START
#if defined XIP_SECONDARY_SLOT_IMAGE
#define FLASH_ORIGIN (XIP_SECONDARY_SLOT_IMAGE == 1 ? XIP_SECONDARY_FLASH_IMAGE_START : FLASH_IMAGE_START)
#else
#define FLASH_ORIGIN FLASH_IMAGE_START
#endif
#ifdef FLASH_NS_START
#define LIMITED_FLASH_LENGTH FLASH_NS_START - FLASH_IMAGE_START
#else
#define LIMITED_FLASH_LENGTH FLASH_IMAGE_END - FLASH_IMAGE_START
#endif
#else
#define FLASH_ORIGIN FLASH_START
#define LIMITED_FLASH_LENGTH FLASH_LENGTH
#endif
; If a flat project has defined RAM_NS_BUFFER_LENGTH, then emit IDAU symbols to allocate non-secure RAM.
#if !defined(PROJECT_NONSECURE) && defined(RAM_NS_BUFFER_LENGTH)
#define __RESERVE_NS_RAM (1)
; Allocate required RAM and align to 32K boundary
#define RAM_NS_BUFFER_START ((RAM_START + RAM_LENGTH - RAM_NS_BUFFER_LENGTH) AND 0xFFFFFFE0)
#else
#define __RESERVE_NS_RAM (0)
#endif
#ifndef FLASH_S_START
#define FLASH_S_START 0
#endif
#ifndef RAM_S_START
#define RAM_S_START RAM_START
#endif
#ifndef DATA_FLASH_S_START
#define DATA_FLASH_S_START DATA_FLASH_START
#endif
#ifndef OPTION_SETTING_DATA_FLASH_S_START
#define OPTION_SETTING_DATA_FLASH_S_START 0
#endif
#ifndef OPTION_SETTING_DATA_FLASH_S_LENGTH
#define OPTION_SETTING_DATA_FLASH_S_LENGTH 0
#endif
#if __RESERVE_NS_RAM
#ifndef RAM_NSC_START
#define RAM_NSC_START RAM_NS_BUFFER_START AND 0xFFFFE000
#endif
#ifndef RAM_NS_START
#define RAM_NS_START RAM_NS_BUFFER_START AND 0xFFFFE000
#endif
#ifndef DATA_FLASH_NS_START
#define DATA_FLASH_NS_START DATA_FLASH_START + DATA_FLASH_LENGTH
#endif
#ifndef FLASH_NSC_START
#define FLASH_NSC_START FLASH_ORIGIN + LIMITED_FLASH_LENGTH
#endif
#ifndef FLASH_NS_START
#define FLASH_NS_START FLASH_ORIGIN + LIMITED_FLASH_LENGTH
#endif
#else
#ifndef RAM_NSC_START
#ifdef PROJECT_SECURE
#define RAM_NSC_START +0 ALIGN 1024
#else
#define RAM_NSC_START RAM_START + RAM_LENGTH
#endif
#endif
#ifndef RAM_NS_START
#ifdef PROJECT_SECURE
#define RAM_NS_START +0 ALIGN 8192
#else
#define RAM_NS_START RAM_START + RAM_LENGTH
#endif
#endif
#ifndef DATA_FLASH_NS_START
#define DATA_FLASH_NS_START +0 ALIGN 1024
#endif
#ifndef FLASH_NSC_START
#define FLASH_NSC_START (AlignExpr(ImageLength(LOAD_REGION_FLASH) + ImageBase(LOAD_REGION_FLASH), 1024))
#endif
#ifndef FLASH_NS_START
#define FLASH_NS_START AlignExpr(+0, 32768)
#endif
#endif
#ifndef QSPI_FLASH_S_START
#define QSPI_FLASH_S_START QSPI_FLASH_START
#endif
#ifndef QSPI_FLASH_NS_START
#define QSPI_FLASH_NS_START +0
#endif
#ifndef OSPI_DEVICE_0_S_START
#define OSPI_DEVICE_0_S_START OSPI_DEVICE_0_START
#endif
#ifndef OSPI_DEVICE_0_NS_START
#define OSPI_DEVICE_0_NS_START +0
#endif
#ifndef OSPI_DEVICE_1_S_START
#define OSPI_DEVICE_1_S_START OSPI_DEVICE_1_START
#endif
#ifndef OSPI_DEVICE_1_NS_START
#define OSPI_DEVICE_1_NS_START +0
#endif
#ifndef SDRAM_S_START
#define SDRAM_S_START SDRAM_START
#endif
#ifndef SDRAM_NS_START
#define SDRAM_NS_START +0
#endif
#ifdef QSPI_FLASH_SIZE
#define QSPI_FLASH_PRV_LENGTH QSPI_FLASH_SIZE
#else
#define QSPI_FLASH_PRV_LENGTH QSPI_FLASH_LENGTH
#endif
#ifdef OSPI_DEVICE_0_SIZE
#define OSPI_DEVICE_0_PRV_LENGTH OSPI_DEVICE_0_SIZE
#else
#define OSPI_DEVICE_0_PRV_LENGTH OSPI_DEVICE_0_LENGTH
#endif
#ifdef OSPI_DEVICE_1_SIZE
#define OSPI_DEVICE_1_PRV_LENGTH OSPI_DEVICE_1_SIZE
#else
#define OSPI_DEVICE_1_PRV_LENGTH OSPI_DEVICE_1_LENGTH
#endif
#ifdef PROJECT_NONSECURE
#define OPTION_SETTING_START_NS (OPTION_SETTING_START)
#else
#define OPTION_SETTING_START_NS (OPTION_SETTING_START + 0x80)
#endif
#define ID_CODE_OVERLAP ((ID_CODE_START > OPTION_SETTING_START) && (ID_CODE_START < OPTION_SETTING_START + OPTION_SETTING_LENGTH))
LOAD_REGION_FLASH FLASH_ORIGIN ALIGN 0x80 LIMITED_FLASH_LENGTH
{
__tz_FLASH_S +0 EMPTY 0
{
}
VECTORS +0 FIXED PADVALUE 0xFFFFFFFF ; maximum of 256 exceptions (256*4 bytes == 0x400)
{
*(.fixed_vectors, +FIRST)
*(.application_vectors)
}
#if (OPTION_SETTING_LENGTH == 0) && (FLASH_ORIGIN == FLASH_START)
/* MCUs with the OPTION_SETTING region do not use the ROM registers at 0x400. */
VECTORS_FILL +0 FIXED FILL 0xFFFFFFFF (0x400 - ImageLength(VECTORS))
{
}
ROM_REGISTERS FLASH_START+0x400 FIXED PADVALUE 0xFFFFFFFF
{
bsp_rom_registers.o (.rom_registers)
}
ROM_REGISTERS_FILL +0 FIXED FILL 0xFFFFFFFF (0x100 - ImageLength(ROM_REGISTERS))
{
}
#endif
MCUBOOT_SCE9_KEY +0 FIXED
{
*(.mcuboot_sce9_key)
}
INIT_ARRAY +0 FIXED
{
*(.init_array)
}
USB_DESC_FS +0 FIXED
{
*(.usb_device_desc_fs*)
*(.usb_config_desc_fs*)
*(.usb_interface_desc_fs*)
}
RO_CODE_DATA +0 FIXED
{
*(.text*,.rodata*,.constdata*)
.ANY(+RO)
}
__tz_RAM_S RAM_S_START EMPTY 0
{
}
DTC_VECTOR_TABLE RAM_START UNINIT NOCOMPRESS RAM_LENGTH
{
; If DTC is used, put the DTC vector table at the start of SRAM.
; This avoids memory holes due to 1K alignment required by it.
*(.bss.fsp_dtc_vector_table)
}
DATA +0 NOCOMPRESS
{
; Do not use *(.data*) because it will place data meant for .data_flash in this section.
*(.data.*)
*(.data)
*(.code_in_ram)
#if !__RESERVE_NS_RAM
*(.ns_buffer*)
#endif
.ANY(+RW)
}
BSS +0 NOCOMPRESS
{
*(+ZI)
}
NOINIT +0 UNINIT NOCOMPRESS
{
*(.bss.noinit)
}
NOCACHE +0 UNINIT NOCOMPRESS ALIGN 32
{
*(.bss.nocache)
}
; The required minimum ending alignment is a 32 byte boundary for Armv8-M MPU requirements.
; There is no way to control the ending alignment of NOCACHE, so this dedicated section acts as padding and as the true execution section limit of NOCACHE.
NOCACHE_PAD (ImageLimit(NOCACHE)) EMPTY NOCOMPRESS (AlignExpr(ImageLength(NOCACHE), 32) - ImageLength(NOCACHE))
{
}
ARM_LIB_HEAP +0 ALIGN 8 UNINIT NOCOMPRESS
{
*(.bss.heap)
}
; ARM_LIB_STACK is not used in FSP, but it must be in the scatter file to avoid a linker error
ARM_LIB_STACK +0 ALIGN 8 UNINIT NOCOMPRESS EMPTY 0
{
}
STACK +0 ALIGN 8 UNINIT NOCOMPRESS
{
*(.bss.stack)
*(.bss.stack.thread)
}
/* This is the end of RAM used in the application. */
RAM_END +0 EMPTY 4
{
}
__RAM_NSC_START RAM_NSC_START EMPTY 0
{
}
__tz_RAM_N RAM_NS_START EMPTY 0
{
}
; Support for OctaRAM
OSPI_DEVICE_0_NO_LOAD OSPI_DEVICE_0_START UNINIT NOCOMPRESS
{
*(.ospi_device_0_no_load*)
}
; Support for OctaRAM
OSPI_DEVICE_1_NO_LOAD OSPI_DEVICE_1_START UNINIT NOCOMPRESS
{
*(.ospi_device_1_no_load*)
}
#ifdef FLASH_BOOTLOADER_LENGTH
__bl_FLASH_IMAGE_START BL_FLASH_IMAGE_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_flash_image_start)
}
__bl_XIP_SECONDARY_FLASH_IMAGE_START BL_XIP_SECONDARY_FLASH_IMAGE_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_xip_secondary_flash_image_start)
}
#if FLASH_APPLICATION_NS_LENGTH == 0
__bl_FLASH_IMAGE_END BL_FLASH_IMAGE_END OVERLAY UNINIT 4
{
*(.bl_boundary.bl_flash_image_end)
}
__bl_XIP_SECONDARY_FLASH_IMAGE_END BL_XIP_SECONDARY_FLASH_IMAGE_END OVERLAY UNINIT 4
{
*(.bl_boundary.bl_xip_secondary_flash_image_end)
}
#else
__bl_FLASH_NS_START BL_FLASH_NS_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_flash_ns_start)
}
__bl_FLASH_NSC_START BL_FLASH_NSC_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_flash_nsc_start)
}
__bl_FLASH_NS_IMAGE_START BL_FLASH_NS_IMAGE_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_flash_ns_image_start)
}
__bln_FLASH_IMAGE_START BLN_FLASH_IMAGE_START OVERLAY UNINIT 4
{
*(.bl_boundary.bln_flash_image_start)
}
__bln_FLASH_IMAGE_END BLN_FLASH_IMAGE_END OVERLAY UNINIT 4
{
*(.bl_boundary.bln_flash_image_end)
}
__bl_RAM_NS_START BL_RAM_NS_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_ram_ns_start)
}
__bl_RAM_NSC_START BL_RAM_NSC_START OVERLAY UNINIT 4
{
*(.bl_boundary.bl_ram_nsc_start)
}
#endif
#endif
#if __RESERVE_NS_RAM
RAM_NS_BUFFER RAM_NS_BUFFER_START
{
*(.ns_buffer*)
}
#endif
RAM_LIMIT RAM_START + RAM_LENGTH EMPTY 4
{
}
#if ITCM_LENGTH > 0
; ALIGN will align both the load address and execution address.
; The required minimum execution address alignment is an 8 byte boundary for ECC compatibility.
; Aligning instead to a 16 byte boundary meets the above requirement and also aligns the load address to FCACHE2 for RA8 to optimize copying.
__tz_ITCM_S ITCM_START ALIGN 16 EMPTY 0
{
}
ITCM_DATA +0 NOCOMPRESS ITCM_LENGTH
{
*(.itcm_data*)
}
; The required minimum ending alignment is an 8 byte boundary for ECC compatibility.
; There is no way to control the ending alignment of ITCM_DATA, so this dedicated section acts as padding and as the true load and execution section limit of ITCM_DATA.
; "Load Addr" will show "-" in the map file making it seem as if no padding is actually in the binary, but "Load base:" will show otherwise.
ITCM_PAD (ImageLimit(ITCM_DATA)) FILL 0 NOCOMPRESS (AlignExpr(ImageLength(ITCM_DATA), 8) - ImageLength(ITCM_DATA))
{
}
#ifndef ITCM_NS_START
#define ITCM_NS_START AlignExpr(+0, 8192)
#endif
__tz_ITCM_N ITCM_NS_START ALIGN 8 EMPTY 0
{
}
ScatterAssert((ITCM_START AND 0xF) == 0)
ScatterAssert((ITCM_LENGTH AND 0x7) == 0)
ScatterAssert(((LoadLength(ITCM_DATA) + LoadLength(ITCM_PAD)) AND 0x7) == 0)
ScatterAssert(LoadLimit(ITCM_DATA) == LoadBase(ITCM_PAD))
ScatterAssert(ImageLimit(ITCM_DATA) == ImageBase(ITCM_PAD))
#endif
#if DTCM_LENGTH > 0
; ALIGN will align both the load address and execution address.
; The required minimum execution address alignment is an 8 byte boundary for ECC compatibility.
; Aligning instead to a 16 byte boundary meets the above requirement and also aligns the load address to FCACHE2 for RA8 to optimize copying.
__tz_DTCM_S DTCM_START ALIGN 16 EMPTY 0
{
}
DTCM_DATA +0 NOCOMPRESS DTCM_LENGTH
{
*(.dtcm_data*)
}
; The required minimum ending alignment is an 8 byte boundary for ECC compatibility.
; There is no way to control the ending alignment of DTCM_DATA, so this dedicated section acts as padding and as the true load and execution section limit of DTCM_DATA.
; "Load Addr" will show "-" in the map file making it seem as if no padding is actually in the binary, but "Load base:" will show otherwise.
DTCM_PAD (ImageLimit(DTCM_DATA)) FILL 0 NOCOMPRESS (AlignExpr(ImageLength(DTCM_DATA), 8) - ImageLength(DTCM_DATA))
{
}
DTCM_BSS (ImageLimit(DTCM_PAD)) UNINIT NOCOMPRESS (DTCM_LENGTH - ImageLength(DTCM_DATA) - ImageLength(DTCM_PAD))
{
; .bss prefix is required for AC6 to not create a load image data for this section.
; Only .bss prefixed sections can be ZI.
; Only ZI sections with UNINIT can be uninitialized.
*(.bss.dtcm_bss)
}
; The required minimum ending alignment is an 8 byte boundary for ECC compatibility.
; There is no way to control the ending alignment of DTCM_BSS, so this dedicated section acts as padding and as the true execution section limit of DTCM_BSS.
DTCM_BSS_PAD (ImageLimit(DTCM_BSS)) EMPTY NOCOMPRESS (AlignExpr(ImageLength(DTCM_BSS), 8) - ImageLength(DTCM_BSS))
{
}
#ifndef DTCM_NS_START
#define DTCM_NS_START AlignExpr(+0, 8192)
#endif
__tz_DTCM_N DTCM_NS_START ALIGN 8 EMPTY 0
{
}
ScatterAssert((DTCM_START AND 0xF) == 0)
ScatterAssert((DTCM_LENGTH AND 0x7) == 0)
ScatterAssert(((LoadLength(DTCM_DATA) + LoadLength(DTCM_PAD)) AND 0x7) == 0)
ScatterAssert(((ImageLength(DTCM_BSS) + ImageLength(DTCM_BSS_PAD)) AND 0x7) == 0)
ScatterAssert(LoadLimit(DTCM_DATA) == LoadBase(DTCM_PAD))
ScatterAssert(LoadLimit(DTCM_PAD) == LoadBase(DTCM_BSS))
ScatterAssert(LoadLimit(DTCM_BSS) == LoadBase(DTCM_BSS_PAD))
ScatterAssert(ImageLimit(DTCM_DATA) == ImageBase(DTCM_PAD))
ScatterAssert(ImageLimit(DTCM_PAD) == ImageBase(DTCM_BSS))
ScatterAssert(ImageLimit(DTCM_BSS) == ImageBase(DTCM_BSS_PAD))
#endif
}
LOAD_REGION_NSC_FLASH FLASH_NSC_START
{
__FLASH_NSC_START FLASH_NSC_START EMPTY 0
{
}
EXEC_NSCR FLASH_NSC_START FIXED
{
*(Veneer$$CMSE)
}
__tz_FLASH_N FLASH_NS_START EMPTY 0
{
}
}
#if ID_CODE_OVERLAP == 0
#if ID_CODE_LENGTH != 0
LOAD_REGION_ID_CODE ID_CODE_START ID_CODE_LENGTH
{
__tz_ID_CODE_S ID_CODE_START EMPTY 0
{
}
; Set this symbol to the same value as __tz_ID_CODE_S so the RA configuration tool does not split the ID_CODE
; memory region between TrustZone projects.
__tz_ID_CODE_N +0 EMPTY 0
{
}
ID_CODE +0 FIXED
{
*(.id_code*)
}
}
#else
LOAD_REGION_ID_CODE ID_CODE_START 4
{
__tz_ID_CODE_S ID_CODE_START EMPTY 0
{
}
__tz_ID_CODE_N +0 EMPTY 0
{
}
}
#endif
#endif
#if OPTION_SETTING_LENGTH != 0
LOAD_REGION_OPTION_SETTING OPTION_SETTING_START OPTION_SETTING_LENGTH
{
__tz_OPTION_SETTING_S OPTION_SETTING_START EMPTY 0
{
}
#ifndef PROJECT_NONSECURE
OFS0 OPTION_SETTING_START + 0 FIXED
{
*(.option_setting_ofs0)
}
UNUSED_0 (ImageBase(OFS0)+ImageLength(OFS0)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x04 - (ImageBase(OFS0)+ImageLength(OFS0)))
{
}
OFS2 OPTION_SETTING_START + 0x04 FIXED
{
*(.option_setting_ofs2)
}
UNUSED_1 (ImageBase(OFS2)+ImageLength(OFS2)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x10 - (ImageBase(OFS2)+ImageLength(OFS2)))
{
}
DUALSEL OPTION_SETTING_START + 0x10 FIXED
{
*(.option_setting_dualsel)
}
#if ID_CODE_OVERLAP == 0
UNUSED_2 (ImageBase(DUALSEL)+ImageLength(DUALSEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x34 - (ImageBase(DUALSEL)+ImageLength(DUALSEL)))
{
}
#else
UNUSED_BEFORE_ID_CODE (ImageBase(DUALSEL)+ImageLength(DUALSEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x20 - (ImageBase(DUALSEL)+ImageLength(DUALSEL)))
{
}
__tz_ID_CODE_S ID_CODE_START EMPTY 0
{
}
; Set this symbol to the same value as __tz_ID_CODE_S so the RA configuration tool does not split the ID_CODE
; memory region between TrustZone projects.
__tz_ID_CODE_N +0 EMPTY 0
{
}
ID_CODE ID_CODE_START FIXED
{
*(.id_code*)
}
UNUSED_AFTER_ID_CODE (ID_CODE_START + ID_CODE_LENGTH) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x34 - (ID_CODE_START + ID_CODE_LENGTH) )
{
}
#endif
SAS OPTION_SETTING_START + 0x34 FIXED
{
*(.option_setting_sas)
}
UNUSED_3 (ImageBase(SAS)+ImageLength(SAS)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS0) + 0x80 - (ImageBase(SAS)+ImageLength(SAS)))
{
}
__tz_OPTION_SETTING_N OPTION_SETTING_START_NS EMPTY 0
{
}
#else
__tz_OPTION_SETTING_N OPTION_SETTING_START EMPTY 0
{
}
OFS1 OPTION_SETTING_START FIXED
{
*(.option_setting_ofs1)
}
UNUSED_4 (ImageBase(OFS1)+ImageLength(OFS1)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1) + 0x04 - (ImageBase(OFS1)+ImageLength(OFS1)))
{
}
OFS3 OPTION_SETTING_START + 0x04 FIXED
{
*(.option_setting_ofs3)
}
UNUSED_5 (ImageBase(OFS3)+ImageLength(OFS3)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1) + 0x10 - (ImageBase(OFS3)+ImageLength(OFS3)))
{
}
BANKSEL OPTION_SETTING_START + 0x10 FIXED
{
*(.option_setting_banksel)
}
UNUSED_6 (ImageBase(BANKSEL)+ImageLength(BANKSEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1) + 0x40 - (ImageBase(BANKSEL)+ImageLength(BANKSEL)))
{
}
BPS OPTION_SETTING_START + 0x40 FIXED
{
*(.option_setting_bps0)
*(.option_setting_bps1)
*(.option_setting_bps2)
*(.option_setting_bps3)
}
UNUSED_7 (ImageBase(BPS)+ImageLength(BPS)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1) + 0x60 - (ImageBase(BPS)+ImageLength(BPS)))
{
}
PBPS OPTION_SETTING_START + 0x60 FIXED
{
*(.option_setting_pbps0)
*(.option_setting_pbps1)
*(.option_setting_pbps2)
*(.option_setting_pbps3)
}
UNUSED_8 (ImageBase(PBPS)+ImageLength(PBPS)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1) + 0x80 - (ImageBase(PBPS)+ImageLength(PBPS)))
{
}
#endif
}
#if OPTION_SETTING_S_LENGTH != 0
LOAD_REGION_OPTION_SETTING_S OPTION_SETTING_S_START OPTION_SETTING_S_LENGTH
{
__tz_OPTION_SETTING_S_S OPTION_SETTING_S_START EMPTY 0
{
}
#ifndef PROJECT_NONSECURE
OFS1_SEC OPTION_SETTING_S_START + 0 FIXED
{
*(.option_setting_ofs1_sec)
}
UNUSED_7 (ImageBase(OFS1_SEC)+ImageLength(OFS1_SEC)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x04 - (ImageBase(OFS1_SEC)+ImageLength(OFS1_SEC)))
{
}
OFS3_SEC OPTION_SETTING_S_START + 0x04 FIXED
{
*(.option_setting_ofs3_sec)
}
UNUSED_8 (ImageBase(OFS3_SEC)+ImageLength(OFS3_SEC)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x10 - (ImageBase(OFS3_SEC)+ImageLength(OFS3_SEC)))
{
}
BANKSEL_SEC OPTION_SETTING_S_START + 0x10 FIXED
{
*(.option_setting_banksel_sec)
}
UNUSED_9 (ImageBase(BANKSEL_SEC)+ImageLength(BANKSEL_SEC)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x40 - (ImageBase(BANKSEL_SEC)+ImageLength(BANKSEL_SEC)))
{
}
BPS_SEC OPTION_SETTING_S_START + 0x40 FIXED
{
*(.option_setting_bps_sec0)
*(.option_setting_bps_sec1)
*(.option_setting_bps_sec2)
*(.option_setting_bps_sec3)
}
UNUSED_10 (ImageBase(BPS_SEC)+ImageLength(BPS_SEC)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x60 - (ImageBase(BPS_SEC)+ImageLength(BPS_SEC)))
{
}
PBPS_SEC OPTION_SETTING_S_START + 0x60 FIXED
{
*(.option_setting_pbps_sec0)
*(.option_setting_pbps_sec1)
*(.option_setting_pbps_sec2)
*(.option_setting_pbps_sec3)
}
UNUSED_11 (ImageBase(PBPS_SEC)+ImageLength(PBPS_SEC)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x80 - (ImageBase(PBPS_SEC)+ImageLength(PBPS_SEC)))
{
}
OFS1_SEL OPTION_SETTING_S_START + 0x80 FIXED
{
*(.option_setting_ofs1_sel)
}
UNUSED_12 (ImageBase(OFS1_SEL)+ImageLength(OFS1_SEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x84 - (ImageBase(OFS1_SEL)+ImageLength(OFS1_SEL)))
{
}
OFS3_SEL OPTION_SETTING_S_START + 0x84 FIXED
{
*(.option_setting_ofs3_sel)
}
UNUSED_13 (ImageBase(OFS3_SEL)+ImageLength(OFS3_SEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x90 - (ImageBase(OFS3_SEL)+ImageLength(OFS3_SEL)))
{
}
BANKSEL_SEL OPTION_SETTING_S_START + 0x90 FIXED
{
*(.option_setting_banksel_sel)
}
UNUSED_14 (ImageBase(BANKSEL_SEL)+ImageLength(BANKSEL_SEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0xC0 - (ImageBase(BANKSEL_SEL)+ImageLength(BANKSEL_SEL)))
{
}
BPS_SEL OPTION_SETTING_S_START + 0xC0 FIXED
{
*(.option_setting_bps_sel0)
*(.option_setting_bps_sel1)
*(.option_setting_bps_sel2)
*(.option_setting_bps_sel3)
}
UNUSED_15 (ImageBase(BPS_SEL)+ImageLength(BPS_SEL)) FIXED FILL 0xFFFFFFFF (ImageBase(OFS1_SEC) + 0x100 - (ImageBase(BPS_SEL)+ImageLength(BPS_SEL)))
{
}
#endif
__tz_OPTION_SETTING_S_N +0 EMPTY 0
{
}
}
#endif
#endif
#if OPTION_SETTING_DATA_FLASH_S_LENGTH != 0
LOAD_REGION_OPTION_SETTING_DATA_FLASH_S OPTION_SETTING_DATA_FLASH_S_START OPTION_SETTING_DATA_FLASH_S_LENGTH
{
__tz_OPTION_SETTING_DATA_FLASH_S_S OPTION_SETTING_DATA_FLASH_S_START EMPTY 0
{
}
#ifndef PROJECT_NONSECURE
FSBLCTRL0 OPTION_SETTING_DATA_FLASH_S_START + 0x0 FIXED
{
*(.option_setting_data_flash_fsblctrl0)
}
UNUSED_16 (ImageBase(FSBLCTRL0)+ImageLength(FSBLCTRL0)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x04 - (ImageBase(FSBLCTRL0)+ImageLength(FSBLCTRL0)))
{
}
FSBLCTRL1 OPTION_SETTING_DATA_FLASH_S_START + 0x04 FIXED
{
*(.option_setting_data_flash_fsblctrl1)
}
UNUSED_17 (ImageBase(FSBLCTRL1)+ImageLength(FSBLCTRL1)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x08 - (ImageBase(FSBLCTRL1)+ImageLength(FSBLCTRL1)))
{
}
FSBLCTRL2 OPTION_SETTING_DATA_FLASH_S_START + 0x08 FIXED
{
*(.option_setting_data_flash_fsblctrl2)
}
UNUSED_18 (ImageBase(FSBLCTRL2)+ImageLength(FSBLCTRL2)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x0C - (ImageBase(FSBLCTRL2)+ImageLength(FSBLCTRL2)))
{
}
SACC0 OPTION_SETTING_DATA_FLASH_S_START + 0x0C FIXED
{
*(.option_setting_data_flash_sacc0)
}
UNUSED_19 (ImageBase(SACC0)+ImageLength(SACC0)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x010 - (ImageBase(SACC0)+ImageLength(SACC0)))
{
}
SACC1 OPTION_SETTING_DATA_FLASH_S_START + 0x10 FIXED
{
*(.option_setting_data_flash_sacc1)
}
UNUSED_20 (ImageBase(SACC1)+ImageLength(SACC1)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x14 - (ImageBase(SACC1)+ImageLength(SACC1)))
{
}
SAMR OPTION_SETTING_DATA_FLASH_S_START + 0x14 FIXED
{
*(.option_setting_data_flash_samr)
}
UNUSED_21 (ImageBase(SAMR)+ImageLength(SAMR)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x2E0 - (ImageBase(SAMR)+ImageLength(SAMR)))
{
}
HOEMRTPK OPTION_SETTING_DATA_FLASH_S_START + 0x2E0 FIXED
{
*(.option_setting_data_flash_hoemrtpk)
}
UNUSED_22 (ImageBase(HOEMRTPK)+ImageLength(HOEMRTPK)) FIXED FILL 0xFFFFFFFF (ImageBase(FSBLCTRL0) + 0x300 - (ImageBase(HOEMRTPK)+ImageLength(HOEMRTPK)))
{
}
#endif
__tz_OPTION_SETTING_DATA_FLASH_S_N +0 EMPTY 0
{
}
}
#endif
LOAD_REGION_DATA_FLASH DATA_FLASH_START DATA_FLASH_LENGTH
{
__tz_DATA_FLASH_S DATA_FLASH_S_START EMPTY 0
{
}
DATA_FLASH +0
{
*(.data_flash*)
}
__tz_DATA_FLASH_N DATA_FLASH_NS_START EMPTY 0
{
}
}
LOAD_REGION_QSPI_FLASH QSPI_FLASH_START QSPI_FLASH_PRV_LENGTH
{
__tz_QSPI_FLASH_S QSPI_FLASH_S_START EMPTY 0
{
}
QSPI_FLASH +0 FIXED
{
*(.qspi_flash*)
*(.code_in_qspi*)
}
__tz_QSPI_FLASH_N QSPI_FLASH_NS_START EMPTY 0
{
}
}
LOAD_REGION_OSPI_DEVICE_0 OSPI_DEVICE_0_START OSPI_DEVICE_0_PRV_LENGTH
{
__tz_OSPI_DEVICE_0_S OSPI_DEVICE_0_S_START EMPTY 0
{
}
OSPI_DEVICE_0 +0 FIXED
{
*(.ospi_device_0*)
*(.code_in_ospi_device_0*)
}
__tz_OSPI_DEVICE_0_N OSPI_DEVICE_0_NS_START EMPTY 0
{
}
}
LOAD_REGION_OSPI_DEVICE_1 OSPI_DEVICE_1_START OSPI_DEVICE_1_PRV_LENGTH
{
__tz_OSPI_DEVICE_1_S OSPI_DEVICE_1_S_START EMPTY 0
{
}
OSPI_DEVICE_1 +0 FIXED
{
*(.ospi_device_1*)
*(.code_in_ospi_device_1*)
}
__tz_OSPI_DEVICE_1_N OSPI_DEVICE_1_NS_START EMPTY 0
{
}
}
LOAD_REGION_SDRAM SDRAM_START SDRAM_LENGTH
{
__tz_SDRAM_S SDRAM_S_START EMPTY 0
{
}
SDRAM +0 FIXED
{
*(.sdram*)
*(.frame*)
}
NOCACHE_SDRAM +0 UNINIT NOCOMPRESS ALIGN 32
{
*(.bss.nocache_sdram)
}
; The required minimum ending alignment is a 32 byte boundary for Armv8-M MPU requirements.
; There is no way to control the ending alignment of NOCACHE_SDRAM, so this dedicated section acts as padding and as the true execution section limit of NOCACHE_SDRAM.
NOCACHE_SDRAM_PAD (ImageLimit(NOCACHE_SDRAM)) EMPTY NOCOMPRESS (AlignExpr(ImageLength(NOCACHE_SDRAM), 32) - ImageLength(NOCACHE_SDRAM))
{
}
__tz_SDRAM_N SDRAM_NS_START EMPTY 0
{
}
}