rt-thread-official/bsp/at32/libraries/rt_drivers/drv_can_v2.c

725 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-08-30 shelton first version
*/
#include "drv_can_v2.h"
#include "drv_config.h"
#ifdef BSP_USING_CAN_V2
#define LOG_TAG "drv_can"
#include <drv_log.h>
#ifdef RT_CAN_USING_CANFD
static const uint8_t dlc_to_bytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64};
#endif
#ifdef SOC_SERIES_AT32M412
/* attention !!! baud calculation example: apbclk / ((bs1 + bs2) * bittime_div), ep: 180 / ((45 + 135) * 1) = 1MHz*/
/* attention !!! default apbclk 180 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, 1 , 45, 135, 45},
{CAN800kBaud, 1 , 45, 180, 45},
{CAN500kBaud, 1 , 90, 270, 90},
{CAN250kBaud, 2 , 90, 270, 90},
{CAN125kBaud, 3 , 120, 360, 120},
{CAN100kBaud, 5 , 90, 270, 90},
{CAN50kBaud, 9 , 100, 300, 100},
{CAN20kBaud, 18, 125, 375, 125},
{CAN10kBaud, 30, 120, 480, 120},
};
#endif
#ifdef SOC_SERIES_AT32M416
/* attention !!! baud calculation example: apbclk / ((bs1 + bs2) * bittime_div), ep: 180 / ((45 + 135) * 1) = 1MHz*/
/* attention !!! default apbclk 180 mhz */
static const struct at32_baud_rate can_baud_rate_tab[] =
{
{CAN1MBaud, 1 , 45, 135, 45},
{CAN800kBaud, 1 , 45, 180, 45},
{CAN500kBaud, 1 , 90, 270, 90},
{CAN250kBaud, 2 , 90, 270, 90},
{CAN125kBaud, 3 , 120, 360, 120},
{CAN100kBaud, 5 , 90, 270, 90},
{CAN50kBaud, 9 , 100, 300, 100},
{CAN20kBaud, 18, 125, 375, 125},
{CAN10kBaud, 30, 120, 480, 120},
};
#ifdef RT_CAN_USING_CANFD
/* attention !!! baud calculation example: apbclk / ((bs1 + bs2) * bittime_div), ep: 180 / ((45 + 135) * 1) = 1MHz*/
/* attention !!! default apbclk 180 mhz, ssoffset default value is 'seg1 + 1', baud_rate_fd.div must equal to baud_rate.div */
static const struct at32_baud_rate_fd canfd_baud_rate_tab[] =
{
{CANFD_DATA_1MBaud, 1 , 45, 135, 45, 136},
{CANFD_DATA_2MBaud, 1 , 18, 72, 18, 73},
{CANFD_DATA_3MBaud, 1 , 15, 45, 15, 46},
{CANFD_DATA_4MBaud, 1 , 9, 36, 9, 37},
{CANFD_DATA_5MBaud, 1 , 9, 27, 9, 28},
{CANFD_DATA_6MBaud, 1 , 6, 24, 6, 25},
};
#endif
#endif
enum {
#ifdef BSP_USING_CAN1
CAN1_INDEX,
#endif
#ifdef BSP_USING_CAN2
CAN2_INDEX,
#endif
#ifdef BSP_USING_CAN3
CAN3_INDEX,
#endif
};
static struct at32_can can_config[] = {
#ifdef BSP_USING_CAN1
CAN1_CONFIG,
#endif
#ifdef BSP_USING_CAN2
CAN2_CONFIG,
#endif
#ifdef BSP_USING_CAN3
CAN3_CONFIG,
#endif
};
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (can_baud_rate_tab[index].baud_rate == baud)
return index;
}
/* default baud is CAN1MBaud */
return 0;
}
#ifdef RT_CAN_USING_CANFD
static rt_uint32_t get_canfd_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(canfd_baud_rate_tab) / sizeof(canfd_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (canfd_baud_rate_tab[index].baud_rate == baud)
return index;
}
/* default baud is CAN1MBaud */
return 0;
}
#endif
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
rt_uint32_t baud_index;
can_mode_type can_mode;
can_transmit_status_type statues;
RT_ASSERT(can);
RT_ASSERT(cfg);
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
RT_ASSERT(can_instance);
at32_msp_can_init((void *)can_instance->can_x);
/* config can baudrate */
do {
can_transmit_status_get(can_instance->can_x, &statues);
}
while((statues.current_tstat != CAN_TSTAT_IDLE) || (can_stb_status_get(can_instance->can_x) != CAN_STB_STATUS_EMPTY) || \
(can_rxbuf_status_get(can_instance->can_x) != CAN_RXBUF_STATUS_EMPTY));
can_software_reset(can_instance->can_x, TRUE);
#ifdef RT_CAN_USING_CANFD
can_instance->enable_canfd = cfg->enable_canfd;
if (cfg->use_bit_timing != 0U)
{
can_instance->can_x->lbtcfg_bit.presc = cfg->can_timing.prescaler - 1;
can_instance->can_x->actime_bit.ac_seg_1 = cfg->can_timing.num_seg1 - 2;
can_instance->can_x->actime_bit.ac_seg_2 = cfg->can_timing.num_seg2 - 1;
can_instance->can_x->actime_bit.ac_sjw = cfg->can_timing.num_sjw - 1;
can_instance->can_x->fdtime_bit.fd_seg_1 = cfg->canfd_timing.num_seg1 - 2;
can_instance->can_x->fdtime_bit.fd_seg_2 = cfg->canfd_timing.num_seg2 - 1;
can_instance->can_x->fdtime_bit.fd_sjw = cfg->canfd_timing.num_sjw - 1;
can_instance->can_x->lbtcfg_bit.fd_sspoff = cfg->canfd_timing.num_sspoff;
}
else if(cfg->baud_rate_fd != 0U)
{
baud_index = get_canfd_baud_index(cfg->baud_rate_fd);
/* get baudrate parameters */
can_instance->can_x->fdtime_bit.fd_seg_1 = canfd_baud_rate_tab[baud_index].div - 1;
can_instance->can_x->fdtime_bit.fd_seg_1 = canfd_baud_rate_tab[baud_index].bts1_size - 2;
can_instance->can_x->fdtime_bit.fd_seg_2 = canfd_baud_rate_tab[baud_index].bts2_size - 1;
can_instance->can_x->fdtime_bit.fd_sjw = canfd_baud_rate_tab[baud_index].rsaw_size - 1;
can_instance->can_x->lbtcfg_bit.fd_sspoff = canfd_baud_rate_tab[baud_index].ssoffset;
}
else
#endif
{
baud_index = get_can_baud_index(cfg->baud_rate);
/* get baudrate parameters */
can_instance->can_x->lbtcfg_bit.presc = can_baud_rate_tab[baud_index].div - 1;
can_instance->can_x->actime_bit.ac_seg_1 = can_baud_rate_tab[baud_index].bts1_size - 2;
can_instance->can_x->actime_bit.ac_seg_2 = can_baud_rate_tab[baud_index].bts2_size - 1;
can_instance->can_x->actime_bit.ac_sjw = can_baud_rate_tab[baud_index].rsaw_size - 1;
}
can_stb_transmit_mode_set(can_instance->can_x, CAN_STB_TRANSMIT_BY_FIFO);
can_software_reset(can_instance->can_x, FALSE);
/* config can base parameters */
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
can_mode = CAN_MODE_COMMUNICATE;
break;
case RT_CAN_MODE_LISTEN:
can_mode = CAN_MODE_LISTENONLY;
break;
case RT_CAN_MODE_LOOPBACK:
can_mode = CAN_MODE_EXT_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
can_mode = CAN_MODE_LISTENONLY_EXT;
break;
}
can_mode_set(can_instance->can_x, can_mode);
can_retransmission_limit_set(can_instance->can_x, CAN_RE_TRANS_TIMES_UNLIMIT);
can_rearbitration_limit_set(can_instance->can_x, CAN_RE_ARBI_TIMES_UNLIMIT);
can_rxbuf_warning_set(can_instance->can_x, 3);
return RT_EOK;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
rt_uint32_t errtype;
rt_uint8_t filter_number = 0;
can_transmit_status_type statues;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
RT_ASSERT(can_instance != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
nvic_irq_disable(can_instance->rx_irqn);
/* disable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_RAFIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_RFIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_ROIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_RIE_INT, FALSE);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
nvic_irq_disable(can_instance->tx_irqn);
/* disable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_TSIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_TPIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_AIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_ALIE_INT, FALSE);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
nvic_irq_disable(can_instance->err_irqn);
/* disable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_EIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_BEIE_INT, FALSE);
can_interrupt_enable(can_instance->can_x, CAN_EPIE_INT, FALSE);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
/* enable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_RAFIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_RFIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_ROIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_RIE_INT, TRUE);
nvic_irq_enable(can_instance->rx_irqn, 1, 0);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
/* enable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_TSIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_TPIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_AIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_ALIE_INT, TRUE);
nvic_irq_enable(can_instance->tx_irqn, 1, 0);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
/* enable interrupt */
can_interrupt_enable(can_instance->can_x, CAN_EIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_BEIE_INT, TRUE);
can_interrupt_enable(can_instance->can_x, CAN_EPIE_INT, TRUE);
nvic_irq_enable(can_instance->err_irqn, 1, 0);
}
break;
case RT_CAN_CMD_SET_FILTER:
if (RT_NULL == arg)
{
/* default filter config */
can_filter_default_para_init(&can_instance->filter_init_struct);
}
else
{
filter_cfg = (struct rt_can_filter_config *)arg;
/* get default filter */
for (int i = 0; i < filter_cfg->count; i++)
{
if (filter_cfg->items[i].hdr_bank == -1)
{
filter_number = i;
}
else
{
filter_number = filter_cfg->items[i].hdr_bank;
}
can_instance->filter_init_struct.code_para.id = filter_cfg->items[i].id;
can_instance->filter_init_struct.code_para.id_type = (can_identifier_type)filter_cfg->items[i].ide;
can_instance->filter_init_struct.mask_para.id = (~(filter_cfg->items[i].mask) & ~(filter_cfg->items[i].id & filter_cfg->items[i].mask));
can_instance->filter_init_struct.mask_para.id_type = FALSE;
can_instance->filter_init_struct.mask_para.data_length = 0xF;
can_instance->filter_init_struct.mask_para.frame_type = TRUE;
can_instance->filter_init_struct.mask_para.recv_frame = TRUE;
/* filter configuration */
do {
can_transmit_status_get(can_instance->can_x, &statues);
}
while((statues.current_tstat != CAN_TSTAT_IDLE) || (can_stb_status_get(can_instance->can_x) != CAN_STB_STATUS_EMPTY) || \
(can_rxbuf_status_get(can_instance->can_x) != CAN_RXBUF_STATUS_EMPTY));
can_software_reset(can_instance->can_x, TRUE);
can_filter_set(can_instance->can_x, (can_filter_type)filter_number, &can_instance->filter_init_struct);
can_software_reset(can_instance->can_x, FALSE);
can_filter_enable(can_instance->can_x, (can_filter_type)filter_number, TRUE);
}
}
break;
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISTEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISTEN)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.mode)
{
can_instance->device.config.mode = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.baud_rate)
{
can_instance->device.config.baud_rate = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.privmode)
{
can_instance->device.config.privmode = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
errtype = can_instance->can_x->err;
can_instance->device.status.rcverrcnt = errtype >> 24;
can_instance->device.status.snderrcnt = ((errtype >> 16) & 0xFF);
can_instance->device.status.lasterrtype = ((errtype >> 13) & 0x7);
rt_memcpy(arg, &can_instance->device.status, sizeof(can_instance->device.status));
break;
#ifdef RT_CAN_USING_CANFD
case RT_CAN_CMD_SET_CANFD:
if(can_instance->enable_canfd != argval)
{
can_instance->enable_canfd = (rt_uint32_t) argval;
}
break;
case RT_CAN_CMD_SET_BAUD_FD:
argval = (rt_uint32_t) arg;
if (argval != CANFD_DATA_1MBaud &&
argval != CANFD_DATA_2MBaud &&
argval != CANFD_DATA_3MBaud &&
argval != CANFD_DATA_4MBaud &&
argval != CANFD_DATA_5MBaud &&
argval != CANFD_DATA_6MBaud)
{
return -RT_ERROR;
}
if (argval != can_instance->device.config.baud_rate_fd)
{
can_instance->device.config.baud_rate_fd = argval;
return _can_config(&can_instance->device, &can_instance->device.config);
}
break;
case RT_CAN_CMD_SET_BITTIMING:
{
struct rt_can_bit_timing_config *timing_configs = (struct rt_can_bit_timing_config*)arg;
if ((timing_configs == RT_NULL) || (timing_configs->count < 1) || (timing_configs->count > 2))
{
return -RT_ERROR;
}
if (timing_configs->count != 0U)
{
can_instance->device.config.can_timing = timing_configs->items[0];
}
if (timing_configs->count == 2)
{
can_instance->device.config.canfd_timing = timing_configs->items[1];
}
_can_config(&can_instance->device, &can_instance->device.config);
}
break;
#endif
}
return RT_EOK;
}
static rt_ssize_t _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
rt_uint8_t copy_length = 0;
can_txbuf_type tx_message;
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
tx_message.id = pmsg->id;
if (RT_CAN_STDID == pmsg->ide)
{
tx_message.id_type = CAN_ID_STANDARD;
}
else
{
tx_message.id_type = CAN_ID_EXTENDED;
}
if (RT_CAN_DTR == pmsg->rtr)
{
tx_message.frame_type = CAN_FRAME_DATA;
}
else
{
tx_message.frame_type = CAN_FRAME_REMOTE;
}
#ifdef RT_CAN_USING_CANFD
if (pmsg->fd_frame != 0)
{
tx_message.fd_format = CAN_FORMAT_FD;
tx_message.fd_rate_switch = (can_rate_switch_type)pmsg->brs;
RT_ASSERT(pmsg->len <= 15);
}
else
#endif
{
RT_ASSERT(pmsg->len <= 8);
}
#ifdef RT_CAN_USING_CANFD
copy_length = dlc_to_bytes[pmsg->len];
#else
copy_length = pmsg->len;
#endif
/* set up the data field */
rt_memcpy(&tx_message.data[0], &pmsg->data[0], copy_length);
/* set up the dlc */
tx_message.data_length = (can_data_length_type)pmsg->len;
can_txbuf_write(can_instance->can_x, CAN_TXBUF_STB, &tx_message);
can_txbuf_transmit(can_instance->can_x, CAN_TRANSMIT_STB_ALL);
return RT_EOK;
}
static rt_ssize_t _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
can_rxbuf_type rx_message;
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
/* get data */
can_rxbuf_read(can_instance->can_x, &rx_message);
#ifdef RT_CAN_USING_CANFD
pmsg->len = dlc_to_bytes[rx_message.data_length];
pmsg->fd_frame = rx_message.fd_format;
pmsg->brs = rx_message.fd_rate_switch;
#else
if(rx_message.data_length > 8)
pmsg->len = 8;
else
pmsg->len = rx_message.data_length;
#endif
pmsg->id = rx_message.id;
/* get the data field */
rt_memcpy(&pmsg->data[0], &rx_message.data[0], pmsg->len);
if (rx_message.id_type == CAN_ID_STANDARD)
{
pmsg->ide = RT_CAN_STDID;
}
else
{
pmsg->ide = RT_CAN_EXTID;
}
pmsg->rtr = rx_message.frame_type;
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
static void _can_rx_isr(struct rt_can_device *can)
{
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
/* rx_buffer had data be received */
if(can_interrupt_flag_get(can_instance->can_x, CAN_RIF_FLAG) != RESET)
{
can_flag_clear(can_instance->can_x, CAN_RIF_FLAG);
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND);
}
/* rx_buffer almost full */
if(can_interrupt_flag_get(can_instance->can_x, CAN_RAFIF_FLAG) != RESET)
{
can_flag_clear(can_instance->can_x, CAN_RAFIF_FLAG);
}
/* rx_buffer full */
if(can_interrupt_flag_get(can_instance->can_x, CAN_RFIF_FLAG) != RESET)
{
can_flag_clear(can_instance->can_x, CAN_RFIF_FLAG);
}
/* rx_buffer overflow */
if(can_interrupt_flag_get(can_instance->can_x, CAN_ROIF_FLAG) != RESET)
{
can_flag_clear(can_instance->can_x, CAN_ROIF_FLAG);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND);
}
}
static void _can_tx_isr(struct rt_can_device *can)
{
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
/* transmit buffer be completed */
if(can_interrupt_flag_get(can_instance->can_x, CAN_TSIF_FLAG) != RESET)
{
can_flag_clear(can_instance->can_x, CAN_TSIF_FLAG);
rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE);
}
}
void _can_err_isr(struct rt_can_device *can)
{
rt_uint32_t errtype;
struct at32_can *can_instance = rt_container_of(can, struct at32_can, device);
errtype = can_instance->can_x->err;
switch (((errtype >> 13) & 0x7))
{
case RT_CAN_BUS_BIT_PAD_ERR:
can_instance->device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
can_instance->device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
can_instance->device.status.ackerrcnt++;
rt_hw_can_isr(&can_instance->device, RT_CAN_EVENT_TX_FAIL);
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
can_instance->device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
can_instance->device.status.crcerrcnt++;
break;
}
can_instance->device.status.rcverrcnt = errtype >> 24;
can_instance->device.status.snderrcnt = (errtype >> 16 & 0xFF);
can_instance->device.status.lasterrtype = (errtype >> 13 & 0x7);
can_flag_clear(can_instance->can_x, CAN_BEIF_FLAG);
}
#ifdef BSP_USING_CAN1
void CAN1_TX_IRQHandler(void) {
rt_interrupt_enter();
_can_tx_isr(&can_config[CAN1_INDEX].device);
rt_interrupt_leave();
}
void CAN1_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_rx_isr(&can_config[CAN1_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
void CAN1_ERR_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_err_isr(&can_config[CAN1_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_CAN2
void CAN2_TX_IRQHandler(void) {
rt_interrupt_enter();
_can_tx_isr(&can_config[CAN2_INDEX].device);
rt_interrupt_leave();
}
void CAN2_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_rx_isr(&can_config[CAN2_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
void CAN2_ERR_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_err_isr(&can_config[CAN2_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_CAN3
void CAN3_TX_IRQHandler(void) {
rt_interrupt_enter();
_can_tx_isr(&can_config[CAN3_INDEX].device);
rt_interrupt_leave();
}
void CAN3_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_rx_isr(&can_config[CAN3_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
void CAN3_ERR_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
_can_err_isr(&can_config[CAN3_INDEX].device);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
int rt_hw_can_init(void)
{
rt_size_t obj_num;
int index;
obj_num = sizeof(can_config) / sizeof(struct at32_can);
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.ticks = 50;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 16;
#endif
for (index = 0; index < obj_num; index++) {
/* config default filter */
can_filter_config_type filter_config;
can_filter_default_para_init(&filter_config);
can_config[index].filter_init_struct = filter_config;
can_config[index].device.config = config;
rt_hw_can_register(&can_config[index].device,
can_config[index].name,
&_can_ops,
&can_config[index]);
}
return 0;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif /* BSP_USING_CAN_V2 */