mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-25 18:07:22 +08:00
1157 lines
33 KiB
C
1157 lines
33 KiB
C
|
/**
|
||
|
* \file
|
||
|
*
|
||
|
* \brief SAM Peripheral Analog-to-Digital Converter Driver
|
||
|
*
|
||
|
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
|
||
|
*
|
||
|
* \asf_license_start
|
||
|
*
|
||
|
* \page License
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* 3. The name of Atmel may not be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* 4. This software may only be redistributed and used in connection with an
|
||
|
* Atmel microcontroller product.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
||
|
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
||
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* \asf_license_stop
|
||
|
*
|
||
|
*/
|
||
|
/*
|
||
|
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
|
||
|
*/
|
||
|
|
||
|
#ifndef ADC_H_INCLUDED
|
||
|
#define ADC_H_INCLUDED
|
||
|
|
||
|
/**
|
||
|
* \defgroup asfdoc_sam0_adc_group SAM Analog-to-Digital Converter (ADC) Driver
|
||
|
*
|
||
|
* This driver for Atmel® | SMART ARM®-based microcontrollers provides an interface for the configuration
|
||
|
* and management of the device's Analog-to-Digital Converter functionality, for
|
||
|
* the conversion of analog voltages into a corresponding digital form.
|
||
|
* The following driver Application Programming Interface (API) modes are covered by this manual:
|
||
|
* - Polled APIs
|
||
|
* \if ADC_CALLBACK_MODE
|
||
|
* - Callback APIs
|
||
|
* \endif
|
||
|
*
|
||
|
* The following peripheral is used by this module:
|
||
|
* - ADC (Analog-to-Digital Converter)
|
||
|
*
|
||
|
* The following devices can use this module:
|
||
|
* \if DEVICE_SAML21_SUPPORT
|
||
|
* - Atmel | SMART SAM L21/L22
|
||
|
* - Atmel | SMART SAM C20/C21
|
||
|
* \else
|
||
|
* - Atmel | SMART SAM D20/D21
|
||
|
* - Atmel | SMART SAM R21
|
||
|
* - Atmel | SMART SAM D09/D10/D11
|
||
|
* - Atmel | SMART SAM DA1
|
||
|
* - Atmel | SMART SAM HA1
|
||
|
* \endif
|
||
|
*
|
||
|
* The outline of this documentation is as follows:
|
||
|
* - \ref asfdoc_sam0_adc_prerequisites
|
||
|
* - \ref asfdoc_sam0_adc_module_overview
|
||
|
* - \ref asfdoc_sam0_adc_special_considerations
|
||
|
* - \ref asfdoc_sam0_adc_extra_info
|
||
|
* - \ref asfdoc_sam0_adc_examples
|
||
|
* - \ref asfdoc_sam0_adc_api_overview
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_prerequisites Prerequisites
|
||
|
*
|
||
|
* There are no prerequisites for this module.
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_module_overview Module Overview
|
||
|
*
|
||
|
* This driver provides an interface for the Analog-to-Digital conversion
|
||
|
* functions on the device, to convert analog voltages to a corresponding
|
||
|
* digital value. The ADC has up to 12-bit resolution, and is capable of
|
||
|
* \if DEVICE_SAML21_SUPPORT
|
||
|
* converting up to 1,000,000 samples per second (MSPS).
|
||
|
* \else
|
||
|
* converting up to 500K samples per second (KSPS).
|
||
|
* \endif
|
||
|
*
|
||
|
* The ADC has a compare function for accurate monitoring of user defined
|
||
|
* thresholds with minimum software intervention required.
|
||
|
* The ADC may be configured for 8-, 10-, or 12-bit result, reducing the
|
||
|
* conversion time. ADC conversion results are provided left or right adjusted
|
||
|
* which eases calculation when the result is represented as a signed integer.
|
||
|
*
|
||
|
* The input selection is flexible, and both single-ended and differential
|
||
|
* measurements can be made. For differential measurements, an optional gain
|
||
|
* stage is available to increase the dynamic range. In addition, several
|
||
|
* internal signal inputs are available. The ADC can provide both signed and
|
||
|
* unsigned results.
|
||
|
*
|
||
|
* The ADC measurements can either be started by application software or an
|
||
|
* incoming event from another peripheral in the device, and both internal and
|
||
|
* external reference voltages can be selected.
|
||
|
*
|
||
|
* \note Internal references will be enabled by the driver, but not disabled.
|
||
|
* Any reference not used by the application should be disabled by the application.
|
||
|
*
|
||
|
* A simplified block diagram of the ADC can be seen in
|
||
|
* \ref asfdoc_sam0_adc_module_block_diagram "the figure below".
|
||
|
*
|
||
|
* \anchor asfdoc_sam0_adc_module_block_diagram
|
||
|
* \dot
|
||
|
* digraph overview {
|
||
|
* splines = false;
|
||
|
* rankdir=LR;
|
||
|
*
|
||
|
* mux1 [label="Positive input", shape=box];
|
||
|
* mux2 [label="Negative input", shape=box];
|
||
|
*
|
||
|
*
|
||
|
* mux3 [label="Reference", shape=box];
|
||
|
*
|
||
|
* adc [label="ADC", shape=polygon, sides=5, orientation=90, distortion=-0.6, style=filled, fillcolor=darkolivegreen1, height=1, width=1];
|
||
|
* prescaler [label="PRESCALER", shape=box, style=filled, fillcolor=lightblue];
|
||
|
*
|
||
|
* mux1 -> adc;
|
||
|
* mux2 -> adc;
|
||
|
* mux3 -> adc:sw;
|
||
|
* prescaler -> adc;
|
||
|
*
|
||
|
* postproc [label="Post processing", shape=box];
|
||
|
* result [label="RESULT", shape=box, style=filled, fillcolor=lightblue];
|
||
|
*
|
||
|
* adc:e -> postproc:w;
|
||
|
* postproc:e -> result:w;
|
||
|
*
|
||
|
* {rank=same; mux1 mux2}
|
||
|
* {rank=same; prescaler adc}
|
||
|
*
|
||
|
* }
|
||
|
* \enddot
|
||
|
*
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_prescaler Sample Clock Prescaler
|
||
|
* The ADC features a prescaler, which enables conversion at lower clock rates
|
||
|
* than the input Generic Clock to the ADC module. This feature can be used to
|
||
|
* lower the synchronization time of the digital interface to the ADC module
|
||
|
* via a high speed Generic Clock frequency, while still allowing the ADC
|
||
|
* sampling rate to be reduced.
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_resolution ADC Resolution
|
||
|
* The ADC supports full 8-, 10-, or 12-bit resolution. Hardware
|
||
|
* oversampling and decimation can be used to increase the
|
||
|
* effective resolution at the expense of throughput. Using oversampling and
|
||
|
* decimation mode the ADC resolution is increased from 12-bit to an effective
|
||
|
* 13-, 14-, 15-, or 16-bit. In these modes the conversion rate is reduced, as
|
||
|
* a greater number of samples is used to achieve the increased resolution. The
|
||
|
* available resolutions and effective conversion rate is listed in
|
||
|
* \ref asfdoc_sam0_adc_module_conversion_rate "the table below".
|
||
|
*
|
||
|
* \anchor asfdoc_sam0_adc_module_conversion_rate
|
||
|
* <table>
|
||
|
* <caption>Effective ADC Conversion Speed Using Oversampling</caption>
|
||
|
* <tr>
|
||
|
* <th>Resolution</th>
|
||
|
* <th>Effective conversion rate</th>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>13-bit</td>
|
||
|
* <td>Conversion rate divided by 4</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>14-bit</td>
|
||
|
* <td>Conversion rate divided by 16</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>15-bit</td>
|
||
|
* <td>Conversion rate divided by 64</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>16-bit</td>
|
||
|
* <td>Conversion rate divided by 256</td>
|
||
|
* </tr>
|
||
|
* </table>
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_conversion Conversion Modes
|
||
|
* ADC conversions can be software triggered on demand by the user application,
|
||
|
* if continuous sampling is not required. It is also possible to configure the
|
||
|
* ADC in free running mode, where new conversions are started as soon as the
|
||
|
* previous conversion is completed, or configure the ADC to scan across a
|
||
|
* number of input pins (see \ref asfdoc_sam0_adc_module_overview_pin_scan).
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_diff_mode Differential and Single-ended Conversion
|
||
|
* The ADC has two conversion modes; differential and single-ended. When
|
||
|
* measuring signals where the positive input pin is always at a higher voltage
|
||
|
* than the negative input pin, the single-ended conversion mode should be used
|
||
|
* in order to achieve a full 12-bit output resolution.
|
||
|
*
|
||
|
* If however the positive input pin voltage may drop below the negative input
|
||
|
* pin the signed differential mode should be used.
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_sample_time Sample Time
|
||
|
* The sample time for each ADC conversion is configurable as a number of half
|
||
|
* prescaled ADC clock cycles (depending on the prescaler value), allowing the
|
||
|
* user application to achieve faster or slower sampling depending on the
|
||
|
* source impedance of the ADC input channels. For applications with high
|
||
|
* impedance inputs the sample time can be increased to give the ADC an adequate
|
||
|
* time to sample and convert the input channel.
|
||
|
*
|
||
|
* The resulting sampling time is given by the following equation:
|
||
|
* \f[
|
||
|
* t_{SAMPLE} = (sample\_length+1) \times \frac{ADC_{CLK}} {2}
|
||
|
* \f]
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_averaging Averaging
|
||
|
* The ADC can be configured to trade conversion speed for accuracy by averaging
|
||
|
* multiple samples in hardware. This feature is suitable when operating in
|
||
|
* noisy conditions.
|
||
|
*
|
||
|
* You can specify any number of samples to accumulate (up to 1024) and the
|
||
|
* divide ratio to use (up to divide by 128). To modify these settings the
|
||
|
* ADC_RESOLUTION_CUSTOM needs to be set as the resolution. When this is set
|
||
|
* the number of samples to accumulate and the division ratio can be set by
|
||
|
* the configuration struct members \ref adc_config.accumulate_samples and
|
||
|
* \ref adc_config.divide_result. When using this mode the ADC result register
|
||
|
* will be set to be 16-bit wide to accommodate the larger result sizes
|
||
|
* produced by the accumulator.
|
||
|
*
|
||
|
* The effective ADC conversion rate will be reduced by a factor of the number
|
||
|
* of accumulated samples;
|
||
|
* however, the effective resolution will be increased according to
|
||
|
* \ref asfdoc_sam0_adc_module_hw_av_resolution "the table below".
|
||
|
*
|
||
|
* \anchor asfdoc_sam0_adc_module_hw_av_resolution
|
||
|
* <table>
|
||
|
* <caption>Effective ADC Resolution From Various Hardware Averaging Modes</caption>
|
||
|
* <tr>
|
||
|
* <th>Number of samples</tr>
|
||
|
* <th>Final result</tr>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>1</td>
|
||
|
* <td>12-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>2</td>
|
||
|
* <td>13-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>4</td>
|
||
|
* <td>14-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>8</td>
|
||
|
* <td>15-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>16</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>32</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>64</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>128</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>256</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>512</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>1024</td>
|
||
|
* <td>16-bit</td>
|
||
|
* </tr>
|
||
|
* </table>
|
||
|
*
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_offset_corr Offset and Gain Correction
|
||
|
* Inherent gain and offset errors affect the absolute accuracy of the ADC.
|
||
|
*
|
||
|
* The offset error is defined as the deviation of the ADC's actual transfer
|
||
|
* function from ideal straight line at zero input voltage.
|
||
|
*
|
||
|
* The gain error is defined as the deviation of the last output step's
|
||
|
* midpoint from the ideal straight line, after compensating for offset error.
|
||
|
*
|
||
|
* The offset correction value is subtracted from the converted data before the
|
||
|
* result is ready. The gain correction value is multiplied with the offset
|
||
|
* corrected value.
|
||
|
*
|
||
|
* The equation for both offset and gain error compensation is shown below:
|
||
|
* \f[
|
||
|
* ADC_{RESULT} = (VALUE_{CONV} + CORR_{OFFSET}) \times CORR_{GAIN}
|
||
|
* \f]
|
||
|
*
|
||
|
* When enabled, a given set of offset and gain correction values can be applied
|
||
|
* to the sampled data in hardware, giving a corrected stream of sample data to
|
||
|
* the user application at the cost of an increased sample latency.
|
||
|
*
|
||
|
* In single conversion, a latency of 13 ADC Generic Clock cycles is added for
|
||
|
* the final sample result availability. As the correction time is always less
|
||
|
* than the propagation delay, in free running mode this latency appears only
|
||
|
* during the first conversion. After the first conversion is complete, future
|
||
|
* conversion results are available at the defined sampling rate.
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_pin_scan Pin Scan
|
||
|
* In pin scan mode, the first ADC conversion will begin from the configured
|
||
|
* positive channel, plus the requested starting offset. When the first
|
||
|
* conversion is completed, the next conversion will start at the next positive
|
||
|
* input channel and so on, until all requested pins to scan have been sampled
|
||
|
* and converted.
|
||
|
* SAM L21/L22 has automatic sequences feature instead of pin scan mode. In automatic
|
||
|
* sequence mode, all of 32 positives inputs can be included in a sequence. The
|
||
|
* sequence starts from the lowest input, and go to the next enabled input
|
||
|
* automatically.
|
||
|
*
|
||
|
* Pin scanning gives a simple mechanism to sample a large number of physical
|
||
|
* input channel samples, using a single physical ADC channel.
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_window_monitor Window Monitor
|
||
|
* The ADC module window monitor function can be used to automatically compare
|
||
|
* the conversion result against a preconfigured pair of upper and lower
|
||
|
* threshold values.
|
||
|
*
|
||
|
* The threshold values are evaluated differently, depending on whether
|
||
|
* differential or single-ended mode is selected. In differential mode, the
|
||
|
* upper and lower thresholds are evaluated as signed values for the comparison,
|
||
|
* while in single-ended mode the comparisons are made as a set of unsigned
|
||
|
* values.
|
||
|
*
|
||
|
* The significant bits of the lower window monitor threshold and upper window
|
||
|
* monitor threshold values are user-configurable, and follow the overall ADC
|
||
|
* sampling bit precision set when the ADC is configured by the user application.
|
||
|
* For example, only the eight lower bits of the window threshold values will be
|
||
|
* compared to the sampled data whilst the ADC is configured in 8-bit mode.
|
||
|
* In addition, if using differential mode, the 8<SUP>th</SUP> bit will be considered as
|
||
|
* the sign bit even if bit 9 is zero.
|
||
|
*
|
||
|
* \subsection asfdoc_sam0_adc_module_overview_events Events
|
||
|
* Event generation and event actions are configurable in the ADC.
|
||
|
*
|
||
|
* The ADC has two actions that can be triggered upon event reception:
|
||
|
* \li Start conversion
|
||
|
* \li Flush pipeline and start conversion
|
||
|
*
|
||
|
* The ADC can generate two events:
|
||
|
* \li Window monitor
|
||
|
* \li Result ready
|
||
|
*
|
||
|
* If the event actions are enabled in the configuration, any incoming event
|
||
|
* will trigger the action.
|
||
|
*
|
||
|
* If the window monitor event is enabled, an event will be generated
|
||
|
* when the configured window condition is detected.
|
||
|
*
|
||
|
* If the result ready event is enabled, an event will be generated when a
|
||
|
* conversion is completed.
|
||
|
*
|
||
|
* \note The connection of events between modules requires the use of the
|
||
|
* \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
|
||
|
* to route output event of one module to the input event of another.
|
||
|
* For more information on event routing, refer to the event driver
|
||
|
* documentation.
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_special_considerations Special Considerations
|
||
|
*
|
||
|
* An integrated analog temperature sensor is available for use with the ADC.
|
||
|
* The bandgap voltage, as well as the scaled I/O and core voltages can also be
|
||
|
* measured by the ADC. For internal ADC inputs, the internal source(s) may need
|
||
|
* to be manually enabled by the user application before they can be measured.
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_extra_info Extra Information
|
||
|
*
|
||
|
* For extra information, see \ref asfdoc_sam0_adc_extra. This includes:
|
||
|
* - \ref asfdoc_sam0_adc_extra_acronyms
|
||
|
* - \ref asfdoc_sam0_adc_extra_dependencies
|
||
|
* - \ref asfdoc_sam0_adc_extra_errata
|
||
|
* - \ref asfdoc_sam0_adc_extra_history
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_examples Examples
|
||
|
*
|
||
|
* For a list of examples related to this driver, see
|
||
|
* \ref asfdoc_sam0_adc_exqsg.
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_api_overview API Overview
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
#include <compiler.h>
|
||
|
#include <system.h>
|
||
|
#include <adc_feature.h>
|
||
|
|
||
|
/**
|
||
|
* \name Module Status Flags
|
||
|
*
|
||
|
* ADC status flags, returned by \ref adc_get_status() and cleared by
|
||
|
* \ref adc_clear_status().
|
||
|
*
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/** ADC result ready. */
|
||
|
#define ADC_STATUS_RESULT_READY (1UL << 0)
|
||
|
/** Window monitor match. */
|
||
|
#define ADC_STATUS_WINDOW (1UL << 1)
|
||
|
/** ADC result overwritten before read. */
|
||
|
#define ADC_STATUS_OVERRUN (1UL << 2)
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
#if ADC_CALLBACK_MODE == true
|
||
|
# if (ADC_INST_NUM > 1)
|
||
|
# define _ADC_INTERRUPT_VECT_NUM(n, unused) \
|
||
|
SYSTEM_INTERRUPT_MODULE_ADC##n,
|
||
|
/**
|
||
|
* \internal Get the interrupt vector for the given device instance
|
||
|
*
|
||
|
* \param[in] The ADC module instance number
|
||
|
*
|
||
|
* \return Interrupt vector for of the given ADC module instance.
|
||
|
*/
|
||
|
static enum system_interrupt_vector _adc_interrupt_get_interrupt_vector(
|
||
|
uint32_t inst_num)
|
||
|
{
|
||
|
static uint8_t adc_interrupt_vectors[ADC_INST_NUM] = {
|
||
|
MREPEAT(ADC_INST_NUM, _ADC_INTERRUPT_VECT_NUM, 0)
|
||
|
};
|
||
|
|
||
|
return (enum system_interrupt_vector)adc_interrupt_vectors[inst_num];
|
||
|
}
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
#if !defined(__DOXYGEN__)
|
||
|
uint8_t _adc_get_inst_index(
|
||
|
Adc *const hw);
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* \name Driver Initialization and Configuration
|
||
|
* @{
|
||
|
*/
|
||
|
enum status_code adc_init(
|
||
|
struct adc_module *const module_inst,
|
||
|
Adc *hw,
|
||
|
struct adc_config *config);
|
||
|
|
||
|
void adc_get_config_defaults(
|
||
|
struct adc_config *const config);
|
||
|
|
||
|
#if (SAMD) || (SAMHA1) || (SAMR21)
|
||
|
void adc_regular_ain_channel(
|
||
|
uint32_t *pin_array, uint8_t size);
|
||
|
#endif
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
/**
|
||
|
* \name Status Management
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \brief Retrieves the current module status.
|
||
|
*
|
||
|
* Retrieves the status of the module, giving overall state information.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*
|
||
|
* \return Bitmask of \c ADC_STATUS_* flags.
|
||
|
*
|
||
|
* \retval ADC_STATUS_RESULT_READY ADC result is ready to be read
|
||
|
* \retval ADC_STATUS_WINDOW ADC has detected a value inside the set
|
||
|
* window range
|
||
|
* \retval ADC_STATUS_OVERRUN ADC result has overrun
|
||
|
*/
|
||
|
static inline uint32_t adc_get_status(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
uint32_t int_flags = adc_module->INTFLAG.reg;
|
||
|
|
||
|
uint32_t status_flags = 0;
|
||
|
|
||
|
/* Check for ADC Result Ready */
|
||
|
if (int_flags & ADC_INTFLAG_RESRDY) {
|
||
|
status_flags |= ADC_STATUS_RESULT_READY;
|
||
|
}
|
||
|
|
||
|
/* Check for ADC Window Match */
|
||
|
if (int_flags & ADC_INTFLAG_WINMON) {
|
||
|
status_flags |= ADC_STATUS_WINDOW;
|
||
|
}
|
||
|
|
||
|
/* Check for ADC Overrun */
|
||
|
if (int_flags & ADC_INTFLAG_OVERRUN) {
|
||
|
status_flags |= ADC_STATUS_OVERRUN;
|
||
|
}
|
||
|
|
||
|
return status_flags;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Clears a module status flag.
|
||
|
*
|
||
|
* Clears the given status flag of the module.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[in] status_flags Bitmask of \c ADC_STATUS_* flags to clear
|
||
|
*/
|
||
|
static inline void adc_clear_status(
|
||
|
struct adc_module *const module_inst,
|
||
|
const uint32_t status_flags)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
uint32_t int_flags = 0;
|
||
|
|
||
|
/* Check for ADC Result Ready */
|
||
|
if (status_flags & ADC_STATUS_RESULT_READY) {
|
||
|
int_flags |= ADC_INTFLAG_RESRDY;
|
||
|
}
|
||
|
|
||
|
/* Check for ADC Window Match */
|
||
|
if (status_flags & ADC_STATUS_WINDOW) {
|
||
|
int_flags |= ADC_INTFLAG_WINMON;
|
||
|
}
|
||
|
|
||
|
/* Check for ADC Overrun */
|
||
|
if (status_flags & ADC_STATUS_OVERRUN) {
|
||
|
int_flags |= ADC_INTFLAG_OVERRUN;
|
||
|
}
|
||
|
|
||
|
/* Clear interrupt flag */
|
||
|
adc_module->INTFLAG.reg = int_flags;
|
||
|
}
|
||
|
/** @} */
|
||
|
|
||
|
/**
|
||
|
* \name Enable, Disable, and Reset ADC Module, Start Conversion and Read Result
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \brief Enables the ADC module.
|
||
|
*
|
||
|
* Enables an ADC module that has previously been configured. If any internal reference
|
||
|
* is selected it will be enabled.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*/
|
||
|
static inline enum status_code adc_enable(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
#if ADC_CALLBACK_MODE == true
|
||
|
# if (ADC_INST_NUM > 1)
|
||
|
system_interrupt_enable(_adc_interrupt_get_interrupt_vector(
|
||
|
_adc_get_inst_index(adc_module)));
|
||
|
# elif (SAMC20)
|
||
|
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC0);
|
||
|
# else
|
||
|
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC);
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* Disbale interrupt */
|
||
|
adc_module->INTENCLR.reg = ADC_INTENCLR_MASK;
|
||
|
/* Clear interrupt flag */
|
||
|
adc_module->INTFLAG.reg = ADC_INTFLAG_MASK;
|
||
|
|
||
|
adc_module->CTRLA.reg |= ADC_CTRLA_ENABLE;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
return STATUS_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Disables the ADC module.
|
||
|
*
|
||
|
* Disables an ADC module that was previously enabled.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*/
|
||
|
static inline enum status_code adc_disable(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
#if ADC_CALLBACK_MODE == true
|
||
|
# if (ADC_INST_NUM > 1)
|
||
|
system_interrupt_disable(_adc_interrupt_get_interrupt_vector(
|
||
|
_adc_get_inst_index(adc_module)));
|
||
|
# elif (SAMC20)
|
||
|
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC0);
|
||
|
# else
|
||
|
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC);
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
/* Disbale interrupt */
|
||
|
adc_module->INTENCLR.reg = ADC_INTENCLR_MASK;
|
||
|
/* Clear interrupt flag */
|
||
|
adc_module->INTFLAG.reg = ADC_INTFLAG_MASK;
|
||
|
|
||
|
adc_module->CTRLA.reg &= ~ADC_CTRLA_ENABLE;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
return STATUS_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Resets the ADC module.
|
||
|
*
|
||
|
* Resets an ADC module, clearing all module state, and registers to their
|
||
|
* default values.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*/
|
||
|
static inline enum status_code adc_reset(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
/* Disable to make sure the pipeline is flushed before reset */
|
||
|
adc_disable(module_inst);
|
||
|
|
||
|
/* Software reset the module */
|
||
|
adc_module->CTRLA.reg |= ADC_CTRLA_SWRST;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
return STATUS_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \brief Enables an ADC event input or output.
|
||
|
*
|
||
|
* Enables one or more input or output events to or from the ADC module. See
|
||
|
* \ref adc_events "Struct adc_events" for a list of events this module supports.
|
||
|
*
|
||
|
* \note Events cannot be altered while the module is enabled.
|
||
|
*
|
||
|
* \param[in] module_inst Software instance for the ADC peripheral
|
||
|
* \param[in] events Struct containing flags of events to enable
|
||
|
*/
|
||
|
static inline void adc_enable_events(
|
||
|
struct adc_module *const module_inst,
|
||
|
struct adc_events *const events)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
Assert(events);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
uint32_t event_mask = 0;
|
||
|
|
||
|
/* Configure Window Monitor event */
|
||
|
if (events->generate_event_on_window_monitor) {
|
||
|
event_mask |= ADC_EVCTRL_WINMONEO;
|
||
|
}
|
||
|
|
||
|
/* Configure Result Ready event */
|
||
|
if (events->generate_event_on_conversion_done) {
|
||
|
event_mask |= ADC_EVCTRL_RESRDYEO;
|
||
|
}
|
||
|
|
||
|
adc_module->EVCTRL.reg |= event_mask;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Disables an ADC event input or output.
|
||
|
*
|
||
|
* Disables one or more input or output events to or from the ADC module. See
|
||
|
* \ref adc_events "Struct adc_events" for a list of events this module supports.
|
||
|
*
|
||
|
* \note Events cannot be altered while the module is enabled.
|
||
|
*
|
||
|
* \param[in] module_inst Software instance for the ADC peripheral
|
||
|
* \param[in] events Struct containing flags of events to disable
|
||
|
*/
|
||
|
static inline void adc_disable_events(
|
||
|
struct adc_module *const module_inst,
|
||
|
struct adc_events *const events)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
Assert(events);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
uint32_t event_mask = 0;
|
||
|
|
||
|
/* Configure Window Monitor event */
|
||
|
if (events->generate_event_on_window_monitor) {
|
||
|
event_mask |= ADC_EVCTRL_WINMONEO;
|
||
|
}
|
||
|
|
||
|
/* Configure Result Ready event */
|
||
|
if (events->generate_event_on_conversion_done) {
|
||
|
event_mask |= ADC_EVCTRL_RESRDYEO;
|
||
|
}
|
||
|
|
||
|
adc_module->EVCTRL.reg &= ~event_mask;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Starts an ADC conversion.
|
||
|
*
|
||
|
* Starts a new ADC conversion.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*/
|
||
|
static inline void adc_start_conversion(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
adc_module->SWTRIG.reg |= ADC_SWTRIG_START;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Reads the ADC result.
|
||
|
*
|
||
|
* Reads the result from an ADC conversion that was previously started.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[out] result Pointer to store the result value in
|
||
|
*
|
||
|
* \return Status of the ADC read request.
|
||
|
* \retval STATUS_OK The result was retrieved successfully
|
||
|
* \retval STATUS_BUSY A conversion result was not ready
|
||
|
* \retval STATUS_ERR_OVERFLOW The result register has been overwritten by the
|
||
|
* ADC module before the result was read by the software
|
||
|
*/
|
||
|
static inline enum status_code adc_read(
|
||
|
struct adc_module *const module_inst,
|
||
|
uint16_t *result)
|
||
|
{
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
Assert(result);
|
||
|
|
||
|
if (!(adc_get_status(module_inst) & ADC_STATUS_RESULT_READY)) {
|
||
|
/* Result not ready */
|
||
|
return STATUS_BUSY;
|
||
|
}
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
#if (SAMD) || (SAMHA1) || (SAMR21)
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Get ADC result */
|
||
|
*result = adc_module->RESULT.reg;
|
||
|
|
||
|
/* Reset ready flag */
|
||
|
adc_clear_status(module_inst, ADC_STATUS_RESULT_READY);
|
||
|
|
||
|
if (adc_get_status(module_inst) & ADC_STATUS_OVERRUN) {
|
||
|
adc_clear_status(module_inst, ADC_STATUS_OVERRUN);
|
||
|
return STATUS_ERR_OVERFLOW;
|
||
|
}
|
||
|
|
||
|
return STATUS_OK;
|
||
|
}
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
/**
|
||
|
* \name Runtime Changes of ADC Module
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \brief Flushes the ADC pipeline.
|
||
|
*
|
||
|
* Flushes the pipeline and restarts the ADC clock on the next peripheral clock
|
||
|
* edge. All conversions in progress will be lost. When flush is complete, the
|
||
|
* module will resume where it left off.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
*/
|
||
|
static inline void adc_flush(
|
||
|
struct adc_module *const module_inst)
|
||
|
{
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
adc_module->SWTRIG.reg |= ADC_SWTRIG_FLUSH;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
}
|
||
|
void adc_set_window_mode(
|
||
|
struct adc_module *const module_inst,
|
||
|
const enum adc_window_mode window_mode,
|
||
|
const int16_t window_lower_value,
|
||
|
const int16_t window_upper_value);
|
||
|
|
||
|
/**
|
||
|
* \brief Sets positive ADC input pin.
|
||
|
*
|
||
|
* Sets the positive ADC input pin selection.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[in] positive_input Positive input pin
|
||
|
*/
|
||
|
static inline void adc_set_positive_input(
|
||
|
struct adc_module *const module_inst,
|
||
|
const enum adc_positive_input positive_input)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
/* Set positive input pin */
|
||
|
adc_module->INPUTCTRL.reg =
|
||
|
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXPOS_Msk) |
|
||
|
(positive_input);
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \brief Sets negative ADC input pin for differential mode.
|
||
|
*
|
||
|
* Sets the negative ADC input pin, when the ADC is configured in differential
|
||
|
* mode.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[in] negative_input Negative input pin
|
||
|
*/
|
||
|
static inline void adc_set_negative_input(
|
||
|
struct adc_module *const module_inst,
|
||
|
const enum adc_negative_input negative_input)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
|
||
|
/* Set negative input pin */
|
||
|
adc_module->INPUTCTRL.reg =
|
||
|
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXNEG_Msk) |
|
||
|
(negative_input);
|
||
|
|
||
|
while (adc_is_syncing(module_inst)) {
|
||
|
/* Wait for synchronization */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
#if ADC_CALLBACK_MODE == true
|
||
|
/**
|
||
|
* \name Enable and Disable Interrupts
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \brief Enable interrupt.
|
||
|
*
|
||
|
* Enable the given interrupt request from the ADC module.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[in] interrupt Interrupt to enable
|
||
|
*/
|
||
|
static inline void adc_enable_interrupt(struct adc_module *const module_inst,
|
||
|
enum adc_interrupt_flag interrupt)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
/* Enable interrupt */
|
||
|
adc_module->INTENSET.reg = interrupt;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Disable interrupt.
|
||
|
*
|
||
|
* Disable the given interrupt request from the ADC module.
|
||
|
*
|
||
|
* \param[in] module_inst Pointer to the ADC software instance struct
|
||
|
* \param[in] interrupt Interrupt to disable
|
||
|
*/
|
||
|
static inline void adc_disable_interrupt(struct adc_module *const module_inst,
|
||
|
enum adc_interrupt_flag interrupt)
|
||
|
{
|
||
|
/* Sanity check arguments */
|
||
|
Assert(module_inst);
|
||
|
Assert(module_inst->hw);
|
||
|
|
||
|
Adc *const adc_module = module_inst->hw;
|
||
|
/* Enable interrupt */
|
||
|
adc_module->INTENCLR.reg = interrupt;
|
||
|
}
|
||
|
|
||
|
/** @} */
|
||
|
#endif /* ADC_CALLBACK_MODE == true */
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \page asfdoc_sam0_adc_extra Extra Information for ADC Driver
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_extra_acronyms Acronyms
|
||
|
* Below is a table listing the acronyms used in this module, along with their
|
||
|
* intended meanings.
|
||
|
*
|
||
|
* <table>
|
||
|
* <tr>
|
||
|
* <th>Acronym</th>
|
||
|
* <th>Description</th>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>ADC</td>
|
||
|
* <td>Analog-to-Digital Converter</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>DAC</td>
|
||
|
* <td>Digital-to-Analog Converter</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>LSB</td>
|
||
|
* <td>Least Significant Bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>MSB</td>
|
||
|
* <td>Most Significant Bit</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>DMA</td>
|
||
|
* <td>Direct Memory Access</td>
|
||
|
* </tr>
|
||
|
* </table>
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_extra_dependencies Dependencies
|
||
|
* This driver has the following dependencies:
|
||
|
*
|
||
|
* - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_extra_errata Errata
|
||
|
* There are no errata related to this driver.
|
||
|
*
|
||
|
*
|
||
|
* \section asfdoc_sam0_adc_extra_history Module History
|
||
|
* An overview of the module history is presented in the table below, with
|
||
|
* details on the enhancements and fixes made to the module since its first
|
||
|
* release. The current version of this corresponds to the newest version in
|
||
|
* the table.
|
||
|
*
|
||
|
* <table>
|
||
|
* <tr>
|
||
|
* <th>Changelog</th>
|
||
|
* </tr>
|
||
|
* \if DEVICE_SAML21_SUPPORT
|
||
|
* <tr>
|
||
|
* <td>Initial Release</td>
|
||
|
* </tr>
|
||
|
* \else
|
||
|
* <tr>
|
||
|
* <td>Added support for SAM R21</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>Added support for SAM D21 and new DMA quick start guide</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>Added ADC calibration constant loading from the device signature
|
||
|
* row when the module is initialized</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>Initial Release</td>
|
||
|
* </tr>
|
||
|
* \endif
|
||
|
* </table>
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \page asfdoc_sam0_adc_exqsg Examples for ADC Driver
|
||
|
*
|
||
|
* This is a list of the available Quick Start guides (QSGs) and example
|
||
|
* applications for \ref asfdoc_sam0_adc_group. QSGs are simple examples with
|
||
|
* step-by-step instructions to configure and use this driver in a selection of
|
||
|
* use cases. Note that a QSG can be compiled as a standalone application or be
|
||
|
* added to the user application.
|
||
|
*
|
||
|
* - \subpage asfdoc_sam0_adc_basic_use_case
|
||
|
* \if ADC_CALLBACK_MODE
|
||
|
* - \subpage asfdoc_sam0_adc_basic_use_case_callback
|
||
|
* \endif
|
||
|
* - \subpage asfdoc_sam0_adc_dma_use_case
|
||
|
*
|
||
|
* \page asfdoc_sam0_adc_document_revision_history Document Revision History
|
||
|
*
|
||
|
* <table>
|
||
|
* <tr>
|
||
|
* <th>Doc. Rev.</th>
|
||
|
* <th>Date</th>
|
||
|
* <th>Comments</th>
|
||
|
* </tr>
|
||
|
* \if DEVICE_SAML21_SUPPORT
|
||
|
* <tr>
|
||
|
* <td>42451B</td>
|
||
|
* <td>12/2015</td>
|
||
|
* <td>Added support for SAM L22</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>42451A</td>
|
||
|
* <td>07/2015</td>
|
||
|
* <td>Initial document release</td>
|
||
|
* </tr>
|
||
|
* \else
|
||
|
* <tr>
|
||
|
* <td>42109E</td>
|
||
|
* <td>12/2015</td>
|
||
|
* <td>Added support for SAM DA1 and SAM D09</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>42109D</td>
|
||
|
* <td>12/2014</td>
|
||
|
* <td>Added support for SAM R21 and SAM D10/D11</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>42109C</td>
|
||
|
* <td>01/2014</td>
|
||
|
* <td>Added support for SAM D21</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>42109B</td>
|
||
|
* <td>06/2013</td>
|
||
|
* <td>Added additional documentation on the event system. Corrected
|
||
|
* documentation typos.</td>
|
||
|
* </tr>
|
||
|
* <tr>
|
||
|
* <td>42109A</td>
|
||
|
* <td>06/2013</td>
|
||
|
* <td>Initial release</td>
|
||
|
* </tr>
|
||
|
* \endif
|
||
|
* </table>
|
||
|
*/
|
||
|
|
||
|
#endif /* ADC_H_INCLUDED */
|