rt-thread-official/bsp/wch/risc-v/Libraries/ch56x_drivers/ch56x_timer.c

267 lines
6.5 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-07-15 Emuzit first version
*/
#include <rthw.h>
#include <rtdebug.h>
#include <drivers/hwtimer.h>
#include "ch56x_sys.h"
#include "ch56x_timer.h"
#include "isr_sp.h"
#if !defined(BSP_USING_TMR0) && !defined(BSP_USING_TMR1) && !defined(BSP_USING_TMR2)
#error "Please define at least one TMRx"
#endif
struct hwtimer_device
{
struct rt_hwtimer_device parent;
struct rt_hwtimer_info hwtimer_info;
volatile struct timer_registers *reg_base;
rt_hwtimer_mode_t tmode;
irq_number_t irqn;
char *name;
};
#ifdef BSP_USING_TMR0
static struct hwtimer_device hwtimer_device_0 =
{
.hwtimer_info =
{
.maxfreq = 80000000,
.minfreq = 80000000,
.maxcnt = 0x3ffffff,
.cntmode = HWTIMER_CNTMODE_UP,
},
.reg_base = (struct timer_registers *)TMR0_REG_BASE,
.tmode = HWTIMER_MODE_PERIOD,
.irqn = TMR0_IRQn,
.name = "timer0",
};
#endif
#ifdef BSP_USING_TMR1
static struct hwtimer_device hwtimer_device_1 =
{
.hwtimer_info =
{
.maxfreq = 80000000,
.minfreq = 80000000,
.maxcnt = 0x3ffffff,
.cntmode = HWTIMER_CNTMODE_UP,
},
.reg_base = (struct timer_registers *)TMR1_REG_BASE,
.tmode = HWTIMER_MODE_PERIOD,
.irqn = TMR1_IRQn,
.name = "timer1",
};
#endif
#ifdef BSP_USING_TMR2
static struct hwtimer_device hwtimer_device_2 =
{
.hwtimer_info =
{
.maxfreq = 80000000,
.minfreq = 80000000,
.maxcnt = 0x3ffffff,
.cntmode = HWTIMER_CNTMODE_UP,
},
.reg_base = (struct timer_registers *)TMR2_REG_BASE,
.tmode = HWTIMER_MODE_PERIOD,
.irqn = TMR2_IRQn,
.name = "timer2",
};
#endif
static void hwtimer_stop(struct rt_hwtimer_device *timer);
static void hwtimer_init(struct rt_hwtimer_device *timer, uint32_t state)
{
struct hwtimer_device *hwtimer_device = (void *)timer;
RT_ASSERT(hwtimer_device != RT_NULL);
/* no resource processing, `state` ignored */
hwtimer_stop(timer);
if (hwtimer_device->irqn != TMR0_IRQn)
{
hwtimer_device->reg_base->CTRL_DMA.reg = 0;
}
}
static rt_err_t hwtimer_start(struct rt_hwtimer_device *timer, uint32_t cnt, rt_hwtimer_mode_t mode)
{
struct hwtimer_device *hwtimer_device = (void *)timer;
volatile struct timer_registers *txreg;
RT_ASSERT(hwtimer_device != RT_NULL);
/* hwtimer_device->tmode may be different from timer->mode.
* For multi-cycle ONESHOT, tmode is set to PERIOD at hwtimer_start.
*/
hwtimer_device->tmode = mode;
sys_clk_off_by_irqn(hwtimer_device->irqn, SYS_SLP_CLK_ON);
txreg = hwtimer_device->reg_base;
txreg->CNT_END = cnt;
txreg->CTRL_MOD.reg = RB_TMR_ALL_CLEAR;
txreg->CTRL_MOD.reg = RB_TMR_COUNT_EN;
txreg->INTER_EN.cyc_end = 1;
rt_hw_interrupt_umask(hwtimer_device->irqn);
return RT_EOK;
}
static void hwtimer_stop(struct rt_hwtimer_device *timer)
{
struct hwtimer_device *hwtimer_device = (void *)timer;
volatile struct timer_registers *txreg;
RT_ASSERT(hwtimer_device != RT_NULL);
rt_hw_interrupt_mask(hwtimer_device->irqn);
/* note: RB_TMR_COUNT_EN cleared */
txreg = hwtimer_device->reg_base;
txreg->CTRL_MOD.reg = RB_TMR_ALL_CLEAR;
txreg->INTER_EN.reg = 0;
sys_clk_off_by_irqn(hwtimer_device->irqn, SYS_SLP_CLK_OFF);
}
static uint32_t hwtimer_count_get(struct rt_hwtimer_device *timer)
{
struct hwtimer_device *hwtimer_device = (void *)timer;
RT_ASSERT(hwtimer_device != RT_NULL);
return hwtimer_device->reg_base->COUNT;
}
static rt_err_t hwtimer_control(
struct rt_hwtimer_device *timer, uint32_t cmd, void *args)
{
struct hwtimer_device *hwtimer_device = (void *)timer;
rt_err_t result = RT_EOK;
RT_ASSERT(hwtimer_device != RT_NULL);
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
/* clocking for ch56x timers are fixed to Fsys */
if (args == RT_NULL || *(uint32_t *)args != timer->info->minfreq)
{
result = -RT_EINVAL;
}
break;
case HWTIMER_CTRL_STOP:
case HWTIMER_CTRL_INFO_GET:
case HWTIMER_CTRL_MODE_SET:
default:
result = -RT_ENOSYS;
}
return result;
}
static const struct rt_hwtimer_ops hwtimer_ops =
{
.init = hwtimer_init,
.start = hwtimer_start,
.stop = hwtimer_stop,
.count_get = hwtimer_count_get,
.control = hwtimer_control,
};
static int rt_hw_hwtimer_init(void)
{
struct hwtimer_device *devices[3];
uint32_t Fsys = sys_hclk_get();
int n = 0;
#ifdef BSP_USING_TMR2
devices[n++] = &hwtimer_device_2;
#endif
#ifdef BSP_USING_TMR1
devices[n++] = &hwtimer_device_1;
#endif
#ifdef BSP_USING_TMR0
devices[n++] = &hwtimer_device_0;
#endif
while (--n >= 0)
{
struct hwtimer_device *hwtimer_device = devices[n];
/* counting frequency is fixed to Fsys */
hwtimer_device->hwtimer_info.maxfreq = Fsys;
hwtimer_device->hwtimer_info.minfreq = Fsys;
hwtimer_device->parent.info = &hwtimer_device->hwtimer_info;
hwtimer_device->parent.ops = &hwtimer_ops;
rt_device_hwtimer_register(
&hwtimer_device->parent, hwtimer_device->name, RT_NULL);
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_hwtimer_init);
static void _hwtimer_isr_common(struct hwtimer_device *hwtimer_device)
{
volatile struct timer_registers *txreg = hwtimer_device->reg_base;
if (txreg->INT_FLAG.cyc_end)
{
if (hwtimer_device->tmode == HWTIMER_MODE_ONESHOT)
{
/* disable timer to emulate oneshot */
txreg->CTRL_MOD.reg = 0;
}
rt_device_hwtimer_isr(&hwtimer_device->parent);
txreg->INT_FLAG.cyc_end = 1;
}
}
#ifdef BSP_USING_TMR0
void tmr0_irq_handler(void) __attribute__((interrupt()));
void tmr0_irq_handler(void)
{
isr_sp_enter();
rt_interrupt_enter();
_hwtimer_isr_common(&hwtimer_device_0);
rt_interrupt_leave();
isr_sp_leave();
}
#endif
#ifdef BSP_USING_TMR1
void tmr1_irq_handler(void) __attribute__((interrupt()));
void tmr1_irq_handler(void)
{
isr_sp_enter();
rt_interrupt_enter();
_hwtimer_isr_common(&hwtimer_device_1);
rt_interrupt_leave();
isr_sp_leave();
}
#endif
#ifdef BSP_USING_TMR2
void tmr2_irq_handler(void) __attribute__((interrupt()));
void tmr2_irq_handler(void)
{
isr_sp_enter();
rt_interrupt_enter();
_hwtimer_isr_common(&hwtimer_device_2);
rt_interrupt_leave();
isr_sp_leave();
}
#endif