mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-28 02:20:26 +08:00
3016 lines
95 KiB
Plaintext
3016 lines
95 KiB
Plaintext
|
# 2009 October 7
|
||
|
#
|
||
|
# The author disclaims copyright to this source code. In place of
|
||
|
# a legal notice, here is a blessing:
|
||
|
#
|
||
|
# May you do good and not evil.
|
||
|
# May you find forgiveness for yourself and forgive others.
|
||
|
# May you share freely, never taking more than you give.
|
||
|
#
|
||
|
#***********************************************************************
|
||
|
#
|
||
|
# This file implements tests to verify the "testable statements" in the
|
||
|
# foreignkeys.in document.
|
||
|
#
|
||
|
# The tests in this file are arranged to mirror the structure of
|
||
|
# foreignkey.in, with one exception: The statements in section 2, which
|
||
|
# deals with enabling/disabling foreign key support, is tested first,
|
||
|
# before section 1. This is because some statements in section 2 deal
|
||
|
# with builds that do not include complete foreign key support (because
|
||
|
# either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined
|
||
|
# at build time).
|
||
|
#
|
||
|
|
||
|
set testdir [file dirname $argv0]
|
||
|
source $testdir/tester.tcl
|
||
|
|
||
|
proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db }
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 2: Enabling Foreign Key Support
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in
|
||
|
# SQLite, the library must be compiled with neither
|
||
|
# SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined.
|
||
|
#
|
||
|
ifcapable trigger&&foreignkey {
|
||
|
do_test e_fkey-1 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
CREATE TABLE p(i PRIMARY KEY);
|
||
|
CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
|
||
|
INSERT INTO p VALUES('hello');
|
||
|
INSERT INTO c VALUES('hello');
|
||
|
UPDATE p SET i = 'world';
|
||
|
SELECT * FROM c;
|
||
|
}
|
||
|
} {world}
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-44697-61543 If SQLITE_OMIT_TRIGGER is defined but
|
||
|
# SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did prior to
|
||
|
# version 3.6.19 - foreign key definitions are parsed and may be queried
|
||
|
# using PRAGMA foreign_key_list, but foreign key constraints are not
|
||
|
# enforced.
|
||
|
#
|
||
|
# Specifically, test that "PRAGMA foreign_keys" is a no-op in this case.
|
||
|
# When using the pragma to query the current setting, 0 rows are returned.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-22567-44039 The PRAGMA foreign_keys command is a no-op
|
||
|
# in this configuration.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-41784-13339 Tip: If the command "PRAGMA foreign_keys"
|
||
|
# returns no data instead of a single row containing "0" or "1", then
|
||
|
# the version of SQLite you are using does not support foreign keys
|
||
|
# (either because it is older than 3.6.19 or because it was compiled
|
||
|
# with SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined).
|
||
|
#
|
||
|
reset_db
|
||
|
ifcapable !trigger&&foreignkey {
|
||
|
do_test e_fkey-2.1 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
CREATE TABLE p(i PRIMARY KEY);
|
||
|
CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
|
||
|
INSERT INTO p VALUES('hello');
|
||
|
INSERT INTO c VALUES('hello');
|
||
|
UPDATE p SET i = 'world';
|
||
|
SELECT * FROM c;
|
||
|
}
|
||
|
} {hello}
|
||
|
do_test e_fkey-2.2 {
|
||
|
execsql { PRAGMA foreign_key_list(c) }
|
||
|
} {0 0 p j {} CASCADE {NO ACTION} NONE}
|
||
|
do_test e_fkey-2.3 {
|
||
|
execsql { PRAGMA foreign_keys }
|
||
|
} {}
|
||
|
}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test the effects of defining OMIT_FOREIGN_KEY.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then
|
||
|
# foreign key definitions cannot even be parsed (attempting to specify a
|
||
|
# foreign key definition is a syntax error).
|
||
|
#
|
||
|
# Specifically, test that foreign key constraints cannot even be parsed
|
||
|
# in such a build.
|
||
|
#
|
||
|
reset_db
|
||
|
ifcapable !foreignkey {
|
||
|
do_test e_fkey-3.1 {
|
||
|
execsql { CREATE TABLE p(i PRIMARY KEY) }
|
||
|
catchsql { CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE) }
|
||
|
} {1 {near "ON": syntax error}}
|
||
|
do_test e_fkey-3.2 {
|
||
|
# This is allowed, as in this build, "REFERENCES" is not a keyword.
|
||
|
# The declared datatype of column j is "REFERENCES p".
|
||
|
execsql { CREATE TABLE c(j REFERENCES p) }
|
||
|
} {}
|
||
|
do_test e_fkey-3.3 {
|
||
|
execsql { PRAGMA table_info(c) }
|
||
|
} {0 j {REFERENCES p} 0 {} 0}
|
||
|
do_test e_fkey-3.4 {
|
||
|
execsql { PRAGMA foreign_key_list(c) }
|
||
|
} {}
|
||
|
do_test e_fkey-3.5 {
|
||
|
execsql { PRAGMA foreign_keys }
|
||
|
} {}
|
||
|
}
|
||
|
|
||
|
ifcapable !foreignkey||!trigger { finish_test ; return }
|
||
|
reset_db
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-07280-60510 Assuming the library is compiled with
|
||
|
# foreign key constraints enabled, it must still be enabled by the
|
||
|
# application at runtime, using the PRAGMA foreign_keys command.
|
||
|
#
|
||
|
# This also tests that foreign key constraints are disabled by default.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-59578-04990 Foreign key constraints are disabled by
|
||
|
# default (for backwards compatibility), so must be enabled separately
|
||
|
# for each database connection separately.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-4.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE p(i PRIMARY KEY);
|
||
|
CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
|
||
|
INSERT INTO p VALUES('hello');
|
||
|
INSERT INTO c VALUES('hello');
|
||
|
UPDATE p SET i = 'world';
|
||
|
SELECT * FROM c;
|
||
|
}
|
||
|
} {hello}
|
||
|
do_test e_fkey-4.2 {
|
||
|
execsql {
|
||
|
DELETE FROM c;
|
||
|
DELETE FROM p;
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
INSERT INTO p VALUES('hello');
|
||
|
INSERT INTO c VALUES('hello');
|
||
|
UPDATE p SET i = 'world';
|
||
|
SELECT * FROM c;
|
||
|
}
|
||
|
} {world}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-15278-54456 The application can can also use a PRAGMA
|
||
|
# foreign_keys statement to determine if foreign keys are currently
|
||
|
# enabled.
|
||
|
#
|
||
|
# This also tests the example code in section 2 of foreignkeys.in.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-11255-19907
|
||
|
#
|
||
|
reset_db
|
||
|
do_test e_fkey-5.1 {
|
||
|
execsql { PRAGMA foreign_keys }
|
||
|
} {0}
|
||
|
do_test e_fkey-5.2 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
PRAGMA foreign_keys;
|
||
|
}
|
||
|
} {1}
|
||
|
do_test e_fkey-5.3 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
PRAGMA foreign_keys;
|
||
|
}
|
||
|
} {0}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that it is not possible to enable or disable foreign key support
|
||
|
# while not in auto-commit mode.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-46649-58537 It is not possible to enable or disable
|
||
|
# foreign key constraints in the middle of a multi-statement transaction
|
||
|
# (when SQLite is not in autocommit mode). Attempting to do so does not
|
||
|
# return an error; it simply has no effect.
|
||
|
#
|
||
|
reset_db
|
||
|
do_test e_fkey-6.1 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
CREATE TABLE t1(a UNIQUE, b);
|
||
|
CREATE TABLE t2(c, d REFERENCES t1(a));
|
||
|
INSERT INTO t1 VALUES(1, 2);
|
||
|
INSERT INTO t2 VALUES(2, 1);
|
||
|
BEGIN;
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
}
|
||
|
catchsql {
|
||
|
DELETE FROM t1
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-6.2 {
|
||
|
execsql { PRAGMA foreign_keys }
|
||
|
} {1}
|
||
|
do_test e_fkey-6.3 {
|
||
|
execsql {
|
||
|
COMMIT;
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
BEGIN;
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
DELETE FROM t1;
|
||
|
PRAGMA foreign_keys;
|
||
|
}
|
||
|
} {0}
|
||
|
do_test e_fkey-6.4 {
|
||
|
execsql COMMIT
|
||
|
} {}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 1: Introduction to Foreign Key Constraints
|
||
|
###########################################################################
|
||
|
execsql "PRAGMA foreign_keys = ON"
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Verify that the syntax in the first example in section 1 is valid.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-04042-24825 To do so, a foreign key definition may be
|
||
|
# added by modifying the declaration of the track table to the
|
||
|
# following: CREATE TABLE track( trackid INTEGER, trackname TEXT,
|
||
|
# trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES
|
||
|
# artist(artistid) );
|
||
|
#
|
||
|
do_test e_fkey-7.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER,
|
||
|
FOREIGN KEY(trackartist) REFERENCES artist(artistid)
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-61362-32087 Attempting to insert a row into the track
|
||
|
# table that does not correspond to any row in the artist table will
|
||
|
# fail,
|
||
|
#
|
||
|
do_test e_fkey-8.1 {
|
||
|
catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-8.2 {
|
||
|
execsql { INSERT INTO artist VALUES(2, 'artist 1') }
|
||
|
catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-8.2 {
|
||
|
execsql { INSERT INTO track VALUES(1, 'track 1', 2) }
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Attempting to delete a row from the 'artist' table while there are
|
||
|
# dependent rows in the track table also fails.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-24401-52400 as will attempting to delete a row from the
|
||
|
# artist table when there exist dependent rows in the track table
|
||
|
#
|
||
|
do_test e_fkey-9.1 {
|
||
|
catchsql { DELETE FROM artist WHERE artistid = 2 }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-9.2 {
|
||
|
execsql {
|
||
|
DELETE FROM track WHERE trackartist = 2;
|
||
|
DELETE FROM artist WHERE artistid = 2;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# If the foreign key column (trackartist) in table 'track' is set to NULL,
|
||
|
# there is no requirement for a matching row in the 'artist' table.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-23980-48859 There is one exception: if the foreign key
|
||
|
# column in the track table is NULL, then no corresponding entry in the
|
||
|
# artist table is required.
|
||
|
#
|
||
|
do_test e_fkey-10.1 {
|
||
|
execsql {
|
||
|
INSERT INTO track VALUES(1, 'track 1', NULL);
|
||
|
INSERT INTO track VALUES(2, 'track 2', NULL);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-10.2 {
|
||
|
execsql { SELECT * FROM artist }
|
||
|
} {}
|
||
|
do_test e_fkey-10.3 {
|
||
|
# Setting the trackid to a non-NULL value fails, of course.
|
||
|
catchsql { UPDATE track SET trackartist = 5 WHERE trackid = 1 }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-10.4 {
|
||
|
execsql {
|
||
|
INSERT INTO artist VALUES(5, 'artist 5');
|
||
|
UPDATE track SET trackartist = 5 WHERE trackid = 1;
|
||
|
}
|
||
|
catchsql { DELETE FROM artist WHERE artistid = 5}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-10.5 {
|
||
|
execsql {
|
||
|
UPDATE track SET trackartist = NULL WHERE trackid = 1;
|
||
|
DELETE FROM artist WHERE artistid = 5;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that the following is true fo all rows in the track table:
|
||
|
#
|
||
|
# trackartist IS NULL OR
|
||
|
# EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
|
||
|
#
|
||
|
# EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every
|
||
|
# row in the track table, the following expression evaluates to true:
|
||
|
# trackartist IS NULL OR EXISTS(SELECT 1 FROM artist WHERE
|
||
|
# artistid=trackartist)
|
||
|
|
||
|
# This procedure executes a test case to check that statement
|
||
|
# R-52486-21352 is true after executing the SQL statement passed.
|
||
|
# as the second argument.
|
||
|
proc test_r52486_21352 {tn sql} {
|
||
|
set res [catchsql $sql]
|
||
|
set results {
|
||
|
{0 {}}
|
||
|
{1 {PRIMARY KEY must be unique}}
|
||
|
{1 {foreign key constraint failed}}
|
||
|
}
|
||
|
if {[lsearch $results $res]<0} {
|
||
|
error $res
|
||
|
}
|
||
|
|
||
|
do_test e_fkey-11.$tn {
|
||
|
execsql {
|
||
|
SELECT count(*) FROM track WHERE NOT (
|
||
|
trackartist IS NULL OR
|
||
|
EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
|
||
|
)
|
||
|
}
|
||
|
} {0}
|
||
|
}
|
||
|
|
||
|
# Execute a series of random INSERT, UPDATE and DELETE operations
|
||
|
# (some of which may fail due to FK or PK constraint violations) on
|
||
|
# the two tables in the example schema. Test that R-52486-21352
|
||
|
# is true after executing each operation.
|
||
|
#
|
||
|
set Template {
|
||
|
{INSERT INTO track VALUES($t, 'track $t', $a)}
|
||
|
{DELETE FROM track WHERE trackid = $t}
|
||
|
{UPDATE track SET trackartist = $a WHERE trackid = $t}
|
||
|
{INSERT INTO artist VALUES($a, 'artist $a')}
|
||
|
{DELETE FROM artist WHERE artistid = $a}
|
||
|
{UPDATE artist SET artistid = $a2 WHERE artistid = $a}
|
||
|
}
|
||
|
for {set i 0} {$i < 500} {incr i} {
|
||
|
set a [expr int(rand()*10)]
|
||
|
set a2 [expr int(rand()*10)]
|
||
|
set t [expr int(rand()*50)]
|
||
|
set sql [subst [lindex $Template [expr int(rand()*6)]]]
|
||
|
|
||
|
test_r52486_21352 $i $sql
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Check that a NOT NULL constraint can be added to the example schema
|
||
|
# to prohibit NULL child keys from being inserted.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter
|
||
|
# relationship between artist and track, where NULL values are not
|
||
|
# permitted in the trackartist column, simply add the appropriate "NOT
|
||
|
# NULL" constraint to the schema.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-12.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER NOT NULL,
|
||
|
FOREIGN KEY(trackartist) REFERENCES artist(artistid)
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-12.2 {
|
||
|
catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
|
||
|
} {1 {track.trackartist may not be NULL}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-16127-35442
|
||
|
#
|
||
|
# Test an example from foreignkeys.html.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-13.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER,
|
||
|
FOREIGN KEY(trackartist) REFERENCES artist(artistid)
|
||
|
);
|
||
|
INSERT INTO artist VALUES(1, 'Dean Martin');
|
||
|
INSERT INTO artist VALUES(2, 'Frank Sinatra');
|
||
|
INSERT INTO track VALUES(11, 'That''s Amore', 1);
|
||
|
INSERT INTO track VALUES(12, 'Christmas Blues', 1);
|
||
|
INSERT INTO track VALUES(13, 'My Way', 2);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-13.2 {
|
||
|
catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', 3) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-13.3 {
|
||
|
execsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
|
||
|
} {}
|
||
|
do_test e_fkey-13.4 {
|
||
|
catchsql {
|
||
|
UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-13.5 {
|
||
|
execsql {
|
||
|
INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
|
||
|
UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
|
||
|
INSERT INTO track VALUES(15, 'Boogie Woogie', 3);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-15958-50233
|
||
|
#
|
||
|
# Test the second example from the first section of foreignkeys.html.
|
||
|
#
|
||
|
do_test e_fkey-14.1 {
|
||
|
catchsql {
|
||
|
DELETE FROM artist WHERE artistname = 'Frank Sinatra';
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-14.2 {
|
||
|
execsql {
|
||
|
DELETE FROM track WHERE trackname = 'My Way';
|
||
|
DELETE FROM artist WHERE artistname = 'Frank Sinatra';
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-14.3 {
|
||
|
catchsql {
|
||
|
UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-14.4 {
|
||
|
execsql {
|
||
|
DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues');
|
||
|
UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-56032-24923 The foreign key constraint is satisfied if
|
||
|
# for each row in the child table either one or more of the child key
|
||
|
# columns are NULL, or there exists a row in the parent table for which
|
||
|
# each parent key column contains a value equal to the value in its
|
||
|
# associated child key column.
|
||
|
#
|
||
|
# Test also that the usual comparison rules are used when testing if there
|
||
|
# is a matching row in the parent table of a foreign key constraint.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-57765-12380 In the above paragraph, the term "equal"
|
||
|
# means equal when values are compared using the rules specified here.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-15.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE par(p PRIMARY KEY);
|
||
|
CREATE TABLE chi(c REFERENCES par);
|
||
|
|
||
|
INSERT INTO par VALUES(1);
|
||
|
INSERT INTO par VALUES('1');
|
||
|
INSERT INTO par VALUES(X'31');
|
||
|
SELECT typeof(p) FROM par;
|
||
|
}
|
||
|
} {integer text blob}
|
||
|
|
||
|
proc test_efkey_45 {tn isError sql} {
|
||
|
do_test e_fkey-15.$tn.1 "
|
||
|
catchsql {$sql}
|
||
|
" [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
|
||
|
|
||
|
do_test e_fkey-15.$tn.2 {
|
||
|
execsql {
|
||
|
SELECT * FROM chi WHERE c IS NOT NULL AND c NOT IN (SELECT p FROM par)
|
||
|
}
|
||
|
} {}
|
||
|
}
|
||
|
|
||
|
test_efkey_45 1 0 "INSERT INTO chi VALUES(1)"
|
||
|
test_efkey_45 2 1 "INSERT INTO chi VALUES('1.0')"
|
||
|
test_efkey_45 3 0 "INSERT INTO chi VALUES('1')"
|
||
|
test_efkey_45 4 1 "DELETE FROM par WHERE p = '1'"
|
||
|
test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'"
|
||
|
test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'"
|
||
|
test_efkey_45 7 1 "INSERT INTO chi VALUES('1')"
|
||
|
test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')"
|
||
|
test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')"
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Specifically, test that when comparing child and parent key values the
|
||
|
# default collation sequence of the parent key column is used.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-15796-47513 When comparing text values, the collating
|
||
|
# sequence associated with the parent key column is always used.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-16.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE t1(a COLLATE nocase PRIMARY KEY);
|
||
|
CREATE TABLE t2(b REFERENCES t1);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-16.2 {
|
||
|
execsql {
|
||
|
INSERT INTO t1 VALUES('oNe');
|
||
|
INSERT INTO t2 VALUES('one');
|
||
|
INSERT INTO t2 VALUES('ONE');
|
||
|
UPDATE t2 SET b = 'OnE';
|
||
|
UPDATE t1 SET a = 'ONE';
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-16.3 {
|
||
|
catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-16.4 {
|
||
|
catchsql { DELETE FROM t1 WHERE rowid = 1 }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Specifically, test that when comparing child and parent key values the
|
||
|
# affinity of the parent key column is applied to the child key value
|
||
|
# before the comparison takes place.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-04240-13860 When comparing values, if the parent key
|
||
|
# column has an affinity, then that affinity is applied to the child key
|
||
|
# value before the comparison is performed.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-17.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE t1(a NUMERIC PRIMARY KEY);
|
||
|
CREATE TABLE t2(b TEXT REFERENCES t1);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-17.2 {
|
||
|
execsql {
|
||
|
INSERT INTO t1 VALUES(1);
|
||
|
INSERT INTO t1 VALUES(2);
|
||
|
INSERT INTO t1 VALUES('three');
|
||
|
INSERT INTO t2 VALUES('2.0');
|
||
|
SELECT b, typeof(b) FROM t2;
|
||
|
}
|
||
|
} {2.0 text}
|
||
|
do_test e_fkey-17.3 {
|
||
|
execsql { SELECT typeof(a) FROM t1 }
|
||
|
} {integer integer text}
|
||
|
do_test e_fkey-17.4 {
|
||
|
catchsql { DELETE FROM t1 WHERE rowid = 2 }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 3: Required and Suggested Database Indexes
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# A parent key must be either a PRIMARY KEY, subject to a UNIQUE
|
||
|
# constraint, or have a UNIQUE index created on it.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-13435-26311 Usually, the parent key of a foreign key
|
||
|
# constraint is the primary key of the parent table. If they are not the
|
||
|
# primary key, then the parent key columns must be collectively subject
|
||
|
# to a UNIQUE constraint or have a UNIQUE index.
|
||
|
#
|
||
|
# Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE
|
||
|
# constraint, but does have a UNIQUE index created on it, then the UNIQUE index
|
||
|
# must use the default collation sequences associated with the parent key
|
||
|
# columns.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-00376-39212 If the parent key columns have a UNIQUE
|
||
|
# index, then that index must use the collation sequences that are
|
||
|
# specified in the CREATE TABLE statement for the parent table.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-18.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE t2(a REFERENCES t1(x));
|
||
|
}
|
||
|
} {}
|
||
|
proc test_efkey_57 {tn isError sql} {
|
||
|
catchsql { DROP TABLE t1 }
|
||
|
execsql $sql
|
||
|
do_test e_fkey-18.$tn {
|
||
|
catchsql { INSERT INTO t2 VALUES(NULL) }
|
||
|
} [lindex {{0 {}} {/1 {foreign key mismatch - ".*" referencing ".*"}/}} \
|
||
|
$isError]
|
||
|
}
|
||
|
test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) }
|
||
|
test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) }
|
||
|
test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) }
|
||
|
test_efkey_57 5 1 {
|
||
|
CREATE TABLE t1(x);
|
||
|
CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase);
|
||
|
}
|
||
|
test_efkey_57 6 1 { CREATE TABLE t1(x) }
|
||
|
test_efkey_57 7 1 { CREATE TABLE t1(x, y, PRIMARY KEY(x, y)) }
|
||
|
test_efkey_57 8 1 { CREATE TABLE t1(x, y, UNIQUE(x, y)) }
|
||
|
test_efkey_57 9 1 {
|
||
|
CREATE TABLE t1(x, y);
|
||
|
CREATE UNIQUE INDEX t1i ON t1(x, y);
|
||
|
}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# This block tests an example in foreignkeys.html. Several testable
|
||
|
# statements refer to this example, as follows
|
||
|
#
|
||
|
# EVIDENCE-OF: R-27484-01467
|
||
|
#
|
||
|
# FK Constraints on child1, child2 and child3 are Ok.
|
||
|
#
|
||
|
# Problem with FK on child4:
|
||
|
#
|
||
|
# EVIDENCE-OF: R-51039-44840 The foreign key declared as part of table
|
||
|
# child4 is an error because even though the parent key column is
|
||
|
# indexed, the index is not UNIQUE.
|
||
|
#
|
||
|
# Problem with FK on child5:
|
||
|
#
|
||
|
# EVIDENCE-OF: R-01060-48788 The foreign key for table child5 is an
|
||
|
# error because even though the parent key column has a unique index,
|
||
|
# the index uses a different collating sequence.
|
||
|
#
|
||
|
# Problem with FK on child6 and child7:
|
||
|
#
|
||
|
# EVIDENCE-OF: R-63088-37469 Tables child6 and child7 are incorrect
|
||
|
# because while both have UNIQUE indices on their parent keys, the keys
|
||
|
# are not an exact match to the columns of a single UNIQUE index.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-19.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f);
|
||
|
CREATE UNIQUE INDEX i1 ON parent(c, d);
|
||
|
CREATE INDEX i2 ON parent(e);
|
||
|
CREATE UNIQUE INDEX i3 ON parent(f COLLATE nocase);
|
||
|
|
||
|
CREATE TABLE child1(f, g REFERENCES parent(a)); -- Ok
|
||
|
CREATE TABLE child2(h, i REFERENCES parent(b)); -- Ok
|
||
|
CREATE TABLE child3(j, k, FOREIGN KEY(j, k) REFERENCES parent(c, d)); -- Ok
|
||
|
CREATE TABLE child4(l, m REFERENCES parent(e)); -- Err
|
||
|
CREATE TABLE child5(n, o REFERENCES parent(f)); -- Err
|
||
|
CREATE TABLE child6(p, q, FOREIGN KEY(p,q) REFERENCES parent(b, c)); -- Err
|
||
|
CREATE TABLE child7(r REFERENCES parent(c)); -- Err
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-19.2 {
|
||
|
execsql {
|
||
|
INSERT INTO parent VALUES(1, 2, 3, 4, 5, 6);
|
||
|
INSERT INTO child1 VALUES('xxx', 1);
|
||
|
INSERT INTO child2 VALUES('xxx', 2);
|
||
|
INSERT INTO child3 VALUES(3, 4);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-19.2 {
|
||
|
catchsql { INSERT INTO child4 VALUES('xxx', 5) }
|
||
|
} {1 {foreign key mismatch - "child4" referencing "parent"}}
|
||
|
do_test e_fkey-19.3 {
|
||
|
catchsql { INSERT INTO child5 VALUES('xxx', 6) }
|
||
|
} {1 {foreign key mismatch - "child5" referencing "parent"}}
|
||
|
do_test e_fkey-19.4 {
|
||
|
catchsql { INSERT INTO child6 VALUES(2, 3) }
|
||
|
} {1 {foreign key mismatch - "child6" referencing "parent"}}
|
||
|
do_test e_fkey-19.5 {
|
||
|
catchsql { INSERT INTO child7 VALUES(3) }
|
||
|
} {1 {foreign key mismatch - "child7" referencing "parent"}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test errors in the database schema that are detected while preparing
|
||
|
# DML statements. The error text for these messages always matches
|
||
|
# either "foreign key mismatch" or "no such table*" (using [string match]).
|
||
|
#
|
||
|
# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key
|
||
|
# errors that require looking at more than one table definition to
|
||
|
# identify, then those errors are not detected when the tables are
|
||
|
# created.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-48391-38472 Instead, such errors prevent the
|
||
|
# application from preparing SQL statements that modify the content of
|
||
|
# the child or parent tables in ways that use the foreign keys.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-03108-63659 The English language error message for
|
||
|
# foreign key DML errors is usually "foreign key mismatch" but can also
|
||
|
# be "no such table" if the parent table does not exist.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-60781-26576 Foreign key DML errors are may be reported
|
||
|
# if: The parent table does not exist, or The parent key columns named
|
||
|
# in the foreign key constraint do not exist, or The parent key columns
|
||
|
# named in the foreign key constraint are not the primary key of the
|
||
|
# parent table and are not subject to a unique constraint using
|
||
|
# collating sequence specified in the CREATE TABLE, or The child table
|
||
|
# references the primary key of the parent without specifying the
|
||
|
# primary key columns and the number of primary key columns in the
|
||
|
# parent do not match the number of child key columns.
|
||
|
#
|
||
|
do_test e_fkey-20.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE c1(c REFERENCES nosuchtable, d);
|
||
|
|
||
|
CREATE TABLE p2(a, b, UNIQUE(a, b));
|
||
|
CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x));
|
||
|
|
||
|
CREATE TABLE p3(a PRIMARY KEY, b);
|
||
|
CREATE TABLE c3(c REFERENCES p3(b), d);
|
||
|
|
||
|
CREATE TABLE p4(a PRIMARY KEY, b);
|
||
|
CREATE UNIQUE INDEX p4i ON p4(b COLLATE nocase);
|
||
|
CREATE TABLE c4(c REFERENCES p4(b), d);
|
||
|
|
||
|
CREATE TABLE p5(a PRIMARY KEY, b COLLATE nocase);
|
||
|
CREATE UNIQUE INDEX p5i ON p5(b COLLATE binary);
|
||
|
CREATE TABLE c5(c REFERENCES p5(b), d);
|
||
|
|
||
|
CREATE TABLE p6(a PRIMARY KEY, b);
|
||
|
CREATE TABLE c6(c, d, FOREIGN KEY(c, d) REFERENCES p6);
|
||
|
|
||
|
CREATE TABLE p7(a, b, PRIMARY KEY(a, b));
|
||
|
CREATE TABLE c7(c, d REFERENCES p7);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
foreach {tn tbl ptbl err} {
|
||
|
2 c1 {} "no such table: main.nosuchtable"
|
||
|
3 c2 p2 "foreign key mismatch - \"c2\" referencing \"p2\""
|
||
|
4 c3 p3 "foreign key mismatch - \"c3\" referencing \"p3\""
|
||
|
5 c4 p4 "foreign key mismatch - \"c4\" referencing \"p4\""
|
||
|
6 c5 p5 "foreign key mismatch - \"c5\" referencing \"p5\""
|
||
|
7 c6 p6 "foreign key mismatch - \"c6\" referencing \"p6\""
|
||
|
8 c7 p7 "foreign key mismatch - \"c7\" referencing \"p7\""
|
||
|
} {
|
||
|
do_test e_fkey-20.$tn.1 {
|
||
|
catchsql "INSERT INTO $tbl VALUES('a', 'b')"
|
||
|
} [list 1 $err]
|
||
|
do_test e_fkey-20.$tn.2 {
|
||
|
catchsql "UPDATE $tbl SET c = ?, d = ?"
|
||
|
} [list 1 $err]
|
||
|
do_test e_fkey-20.$tn.3 {
|
||
|
catchsql "INSERT INTO $tbl SELECT ?, ?"
|
||
|
} [list 1 $err]
|
||
|
|
||
|
if {$ptbl ne ""} {
|
||
|
do_test e_fkey-20.$tn.4 {
|
||
|
catchsql "DELETE FROM $ptbl"
|
||
|
} [list 1 $err]
|
||
|
do_test e_fkey-20.$tn.5 {
|
||
|
catchsql "UPDATE $ptbl SET a = ?, b = ?"
|
||
|
} [list 1 $err]
|
||
|
do_test e_fkey-20.$tn.6 {
|
||
|
catchsql "INSERT INTO $ptbl SELECT ?, ?"
|
||
|
} [list 1 $err]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-19353-43643
|
||
|
#
|
||
|
# Test the example of foreign key mismatch errors caused by implicitly
|
||
|
# mapping a child key to the primary key of the parent table when the
|
||
|
# child key consists of a different number of columns to that primary key.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-21.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent2(a, b, PRIMARY KEY(a,b));
|
||
|
|
||
|
CREATE TABLE child8(x, y, FOREIGN KEY(x,y) REFERENCES parent2); -- Ok
|
||
|
CREATE TABLE child9(x REFERENCES parent2); -- Err
|
||
|
CREATE TABLE child10(x,y,z, FOREIGN KEY(x,y,z) REFERENCES parent2); -- Err
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-21.2 {
|
||
|
execsql {
|
||
|
INSERT INTO parent2 VALUES('I', 'II');
|
||
|
INSERT INTO child8 VALUES('I', 'II');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-21.3 {
|
||
|
catchsql { INSERT INTO child9 VALUES('I') }
|
||
|
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
|
||
|
do_test e_fkey-21.4 {
|
||
|
catchsql { INSERT INTO child9 VALUES('II') }
|
||
|
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
|
||
|
do_test e_fkey-21.5 {
|
||
|
catchsql { INSERT INTO child9 VALUES(NULL) }
|
||
|
} {1 {foreign key mismatch - "child9" referencing "parent2"}}
|
||
|
do_test e_fkey-21.6 {
|
||
|
catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') }
|
||
|
} {1 {foreign key mismatch - "child10" referencing "parent2"}}
|
||
|
do_test e_fkey-21.7 {
|
||
|
catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
|
||
|
} {1 {foreign key mismatch - "child10" referencing "parent2"}}
|
||
|
do_test e_fkey-21.8 {
|
||
|
catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
|
||
|
} {1 {foreign key mismatch - "child10" referencing "parent2"}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test errors that are reported when creating the child table.
|
||
|
# Specifically:
|
||
|
#
|
||
|
# * different number of child and parent key columns, and
|
||
|
# * child columns that do not exist.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-23682-59820 By contrast, if foreign key errors can be
|
||
|
# recognized simply by looking at the definition of the child table and
|
||
|
# without having to consult the parent table definition, then the CREATE
|
||
|
# TABLE statement for the child table fails.
|
||
|
#
|
||
|
# These errors are reported whether or not FK support is enabled.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-33883-28833 Foreign key DDL errors are reported
|
||
|
# regardless of whether or not foreign key constraints are enabled when
|
||
|
# the table is created.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
foreach fk [list OFF ON] {
|
||
|
execsql "PRAGMA foreign_keys = $fk"
|
||
|
set i 0
|
||
|
foreach {sql error} {
|
||
|
"CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))"
|
||
|
{number of columns in foreign key does not match the number of columns in the referenced table}
|
||
|
"CREATE TABLE child2(a, b, FOREIGN KEY(a, b) REFERENCES p(c, d, e))"
|
||
|
{number of columns in foreign key does not match the number of columns in the referenced table}
|
||
|
"CREATE TABLE child2(a, b, FOREIGN KEY(a, c) REFERENCES p(c, d))"
|
||
|
{unknown column "c" in foreign key definition}
|
||
|
"CREATE TABLE child2(a, b, FOREIGN KEY(c, b) REFERENCES p(c, d))"
|
||
|
{unknown column "c" in foreign key definition}
|
||
|
} {
|
||
|
do_test e_fkey-22.$fk.[incr i] {
|
||
|
catchsql $sql
|
||
|
} [list 1 $error]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that a REFERENCING clause that does not specify parent key columns
|
||
|
# implicitly maps to the primary key of the parent table.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-43879-08025 Attaching a "REFERENCES <parent-table>"
|
||
|
# clause to a column definition creates a foreign
|
||
|
# key constraint that maps the column to the primary key of
|
||
|
# <parent-table>.
|
||
|
#
|
||
|
do_test e_fkey-23.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE p1(a, b, PRIMARY KEY(a, b));
|
||
|
CREATE TABLE p2(a, b PRIMARY KEY);
|
||
|
CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p1);
|
||
|
CREATE TABLE c2(a, b REFERENCES p2);
|
||
|
}
|
||
|
} {}
|
||
|
proc test_efkey_60 {tn isError sql} {
|
||
|
do_test e_fkey-23.$tn "
|
||
|
catchsql {$sql}
|
||
|
" [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
|
||
|
}
|
||
|
|
||
|
test_efkey_60 2 1 "INSERT INTO c1 VALUES(239, 231)"
|
||
|
test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)"
|
||
|
test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)"
|
||
|
test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)"
|
||
|
test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)"
|
||
|
test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)"
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that an index on on the child key columns of an FK constraint
|
||
|
# is optional.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-15417-28014 Indices are not required for child key
|
||
|
# columns
|
||
|
#
|
||
|
# Also test that if an index is created on the child key columns, it does
|
||
|
# not make a difference whether or not it is a UNIQUE index.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-15741-50893 The child key index does not have to be
|
||
|
# (and usually will not be) a UNIQUE index.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-24.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x, y, UNIQUE(y, x));
|
||
|
CREATE TABLE c1(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
|
||
|
CREATE TABLE c2(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
|
||
|
CREATE TABLE c3(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
|
||
|
CREATE INDEX c2i ON c2(a, b);
|
||
|
CREATE UNIQUE INDEX c3i ON c2(b, a);
|
||
|
}
|
||
|
} {}
|
||
|
proc test_efkey_61 {tn isError sql} {
|
||
|
do_test e_fkey-24.$tn "
|
||
|
catchsql {$sql}
|
||
|
" [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
|
||
|
}
|
||
|
foreach {tn c} [list 2 c1 3 c2 4 c3] {
|
||
|
test_efkey_61 $tn.1 1 "INSERT INTO $c VALUES(1, 2)"
|
||
|
test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)"
|
||
|
test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)"
|
||
|
|
||
|
execsql "DELETE FROM $c ; DELETE FROM parent"
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-00279-52283
|
||
|
#
|
||
|
# Test an example showing that when a row is deleted from the parent
|
||
|
# table, the child table is queried for orphaned rows as follows:
|
||
|
#
|
||
|
# SELECT rowid FROM track WHERE trackartist = ?
|
||
|
#
|
||
|
# EVIDENCE-OF: R-23302-30956 If this SELECT returns any rows at all,
|
||
|
# then SQLite concludes that deleting the row from the parent table
|
||
|
# would violate the foreign key constraint and returns an error.
|
||
|
#
|
||
|
do_test e_fkey-25.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER,
|
||
|
FOREIGN KEY(trackartist) REFERENCES artist(artistid)
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
do_execsql_test e_fkey-25.2 {
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
|
||
|
EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
|
||
|
} {
|
||
|
0 0 0 {SCAN TABLE artist}
|
||
|
0 0 0 {SCAN TABLE track}
|
||
|
}
|
||
|
do_execsql_test e_fkey-25.3 {
|
||
|
PRAGMA foreign_keys = ON;
|
||
|
EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
|
||
|
} {
|
||
|
0 0 0 {SCAN TABLE artist}
|
||
|
0 0 0 {SCAN TABLE track}
|
||
|
}
|
||
|
do_test e_fkey-25.4 {
|
||
|
execsql {
|
||
|
INSERT INTO artist VALUES(5, 'artist 5');
|
||
|
INSERT INTO artist VALUES(6, 'artist 6');
|
||
|
INSERT INTO artist VALUES(7, 'artist 7');
|
||
|
INSERT INTO track VALUES(1, 'track 1', 5);
|
||
|
INSERT INTO track VALUES(2, 'track 2', 6);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-25.5 {
|
||
|
concat \
|
||
|
[execsql { SELECT rowid FROM track WHERE trackartist = 5 }] \
|
||
|
[catchsql { DELETE FROM artist WHERE artistid = 5 }]
|
||
|
} {1 1 {foreign key constraint failed}}
|
||
|
|
||
|
do_test e_fkey-25.6 {
|
||
|
concat \
|
||
|
[execsql { SELECT rowid FROM track WHERE trackartist = 7 }] \
|
||
|
[catchsql { DELETE FROM artist WHERE artistid = 7 }]
|
||
|
} {0 {}}
|
||
|
|
||
|
do_test e_fkey-25.7 {
|
||
|
concat \
|
||
|
[execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \
|
||
|
[catchsql { DELETE FROM artist WHERE artistid = 6 }]
|
||
|
} {2 1 {foreign key constraint failed}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-47936-10044 Or, more generally:
|
||
|
# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
|
||
|
#
|
||
|
# Test that when a row is deleted from the parent table of an FK
|
||
|
# constraint, the child table is queried for orphaned rows. The
|
||
|
# query is equivalent to:
|
||
|
#
|
||
|
# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
|
||
|
#
|
||
|
# Also test that when a row is inserted into the parent table, or when the
|
||
|
# parent key values of an existing row are modified, a query equivalent
|
||
|
# to the following is planned. In some cases it is not executed, but it
|
||
|
# is always planned.
|
||
|
#
|
||
|
# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
|
||
|
#
|
||
|
# EVIDENCE-OF: R-61616-46700 Similar queries may be run if the content
|
||
|
# of the parent key is modified or a new row is inserted into the parent
|
||
|
# table.
|
||
|
#
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-26.1 {
|
||
|
execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) }
|
||
|
} {}
|
||
|
foreach {tn sql} {
|
||
|
2 {
|
||
|
CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y))
|
||
|
}
|
||
|
3 {
|
||
|
CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
|
||
|
CREATE INDEX childi ON child(a, b);
|
||
|
}
|
||
|
4 {
|
||
|
CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
|
||
|
CREATE UNIQUE INDEX childi ON child(b, a);
|
||
|
}
|
||
|
} {
|
||
|
execsql $sql
|
||
|
|
||
|
execsql {PRAGMA foreign_keys = OFF}
|
||
|
set delete [concat \
|
||
|
[eqp "DELETE FROM parent WHERE 1"] \
|
||
|
[eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"]
|
||
|
]
|
||
|
set update [concat \
|
||
|
[eqp "UPDATE parent SET x=?, y=?"] \
|
||
|
[eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] \
|
||
|
[eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"]
|
||
|
]
|
||
|
execsql {PRAGMA foreign_keys = ON}
|
||
|
|
||
|
do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete
|
||
|
do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update
|
||
|
|
||
|
execsql {DROP TABLE child}
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-14553-34013
|
||
|
#
|
||
|
# Test the example schema at the end of section 3. Also test that is
|
||
|
# is "efficient". In this case "efficient" means that foreign key
|
||
|
# related operations on the parent table do not provoke linear scans.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-27.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER REFERENCES artist
|
||
|
);
|
||
|
CREATE INDEX trackindex ON track(trackartist);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-27.2 {
|
||
|
eqp { INSERT INTO artist VALUES(?, ?) }
|
||
|
} {}
|
||
|
do_execsql_test e_fkey-27.3 {
|
||
|
EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
|
||
|
} {
|
||
|
0 0 0 {SCAN TABLE artist}
|
||
|
0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
|
||
|
0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
|
||
|
}
|
||
|
do_execsql_test e_fkey-27.4 {
|
||
|
EXPLAIN QUERY PLAN DELETE FROM artist
|
||
|
} {
|
||
|
0 0 0 {SCAN TABLE artist}
|
||
|
0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
|
||
|
}
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 4.1: Composite Foreign Key Constraints
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Check that parent and child keys must have the same number of columns.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-41062-34431 Parent and child keys must have the same
|
||
|
# cardinality.
|
||
|
#
|
||
|
foreach {tn sql err} {
|
||
|
1 "CREATE TABLE c(jj REFERENCES p(x, y))"
|
||
|
{foreign key on jj should reference only one column of table p}
|
||
|
|
||
|
2 "CREATE TABLE c(jj REFERENCES p())" {near ")": syntax error}
|
||
|
|
||
|
3 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p(x, y))"
|
||
|
{number of columns in foreign key does not match the number of columns in the referenced table}
|
||
|
|
||
|
4 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p())"
|
||
|
{near ")": syntax error}
|
||
|
|
||
|
5 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p())"
|
||
|
{near ")": syntax error}
|
||
|
|
||
|
6 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x))"
|
||
|
{number of columns in foreign key does not match the number of columns in the referenced table}
|
||
|
|
||
|
7 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x,y,z))"
|
||
|
{number of columns in foreign key does not match the number of columns in the referenced table}
|
||
|
} {
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-28.$tn [list catchsql $sql] [list 1 $err]
|
||
|
}
|
||
|
do_test e_fkey-28.8 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE p(x PRIMARY KEY);
|
||
|
CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p);
|
||
|
}
|
||
|
catchsql {DELETE FROM p}
|
||
|
} {1 {foreign key mismatch - "c" referencing "p"}}
|
||
|
do_test e_fkey-28.9 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE p(x, y, PRIMARY KEY(x,y));
|
||
|
CREATE TABLE c(a REFERENCES p);
|
||
|
}
|
||
|
catchsql {DELETE FROM p}
|
||
|
} {1 {foreign key mismatch - "c" referencing "p"}}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-24676-09859
|
||
|
#
|
||
|
# Test the example schema in the "Composite Foreign Key Constraints"
|
||
|
# section.
|
||
|
#
|
||
|
do_test e_fkey-29.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE album(
|
||
|
albumartist TEXT,
|
||
|
albumname TEXT,
|
||
|
albumcover BINARY,
|
||
|
PRIMARY KEY(albumartist, albumname)
|
||
|
);
|
||
|
CREATE TABLE song(
|
||
|
songid INTEGER,
|
||
|
songartist TEXT,
|
||
|
songalbum TEXT,
|
||
|
songname TEXT,
|
||
|
FOREIGN KEY(songartist, songalbum) REFERENCES album(albumartist,albumname)
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-29.2 {
|
||
|
execsql {
|
||
|
INSERT INTO album VALUES('Elvis Presley', 'Elvis'' Christmas Album', NULL);
|
||
|
INSERT INTO song VALUES(
|
||
|
1, 'Elvis Presley', 'Elvis'' Christmas Album', 'Here Comes Santa Clause'
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-29.3 {
|
||
|
catchsql {
|
||
|
INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever');
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-33626-48418 In SQLite, if any of the child key columns
|
||
|
# (in this case songartist and songalbum) are NULL, then there is no
|
||
|
# requirement for a corresponding row in the parent table.
|
||
|
#
|
||
|
do_test e_fkey-30.1 {
|
||
|
execsql {
|
||
|
INSERT INTO song VALUES(2, 'Elvis Presley', NULL, 'Fever');
|
||
|
INSERT INTO song VALUES(3, NULL, 'Elvis Is Back', 'Soldier Boy');
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 4.2: Deferred Foreign Key Constraints
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that if a statement violates an immediate FK constraint, and the
|
||
|
# database does not satisfy the FK constraint once all effects of the
|
||
|
# statement have been applied, an error is reported and the effects of
|
||
|
# the statement rolled back.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-09323-30470 If a statement modifies the contents of the
|
||
|
# database so that an immediate foreign key constraint is in violation
|
||
|
# at the conclusion the statement, an exception is thrown and the
|
||
|
# effects of the statement are reverted.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-31.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE king(a, b, PRIMARY KEY(a));
|
||
|
CREATE TABLE prince(c REFERENCES king, d);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-31.2 {
|
||
|
# Execute a statement that violates the immediate FK constraint.
|
||
|
catchsql { INSERT INTO prince VALUES(1, 2) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
do_test e_fkey-31.3 {
|
||
|
# This time, use a trigger to fix the constraint violation before the
|
||
|
# statement has finished executing. Then execute the same statement as
|
||
|
# in the previous test case. This time, no error.
|
||
|
execsql {
|
||
|
CREATE TRIGGER kt AFTER INSERT ON prince WHEN
|
||
|
NOT EXISTS (SELECT a FROM king WHERE a = new.c)
|
||
|
BEGIN
|
||
|
INSERT INTO king VALUES(new.c, NULL);
|
||
|
END
|
||
|
}
|
||
|
execsql { INSERT INTO prince VALUES(1, 2) }
|
||
|
} {}
|
||
|
|
||
|
# Test that operating inside a transaction makes no difference to
|
||
|
# immediate constraint violation handling.
|
||
|
do_test e_fkey-31.4 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
INSERT INTO prince VALUES(2, 3);
|
||
|
DROP TRIGGER kt;
|
||
|
}
|
||
|
catchsql { INSERT INTO prince VALUES(3, 4) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-31.5 {
|
||
|
execsql {
|
||
|
COMMIT;
|
||
|
SELECT * FROM king;
|
||
|
}
|
||
|
} {1 {} 2 {}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that if a deferred constraint is violated within a transaction,
|
||
|
# nothing happens immediately and the database is allowed to persist
|
||
|
# in a state that does not satisfy the FK constraint. However attempts
|
||
|
# to COMMIT the transaction fail until the FK constraint is satisfied.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-49178-21358 By contrast, if a statement modifies the
|
||
|
# contents of the database such that a deferred foreign key constraint
|
||
|
# is violated, the violation is not reported immediately.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-39692-12488 Deferred foreign key constraints are not
|
||
|
# checked until the transaction tries to COMMIT.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-55147-47664 For as long as the user has an open
|
||
|
# transaction, the database is allowed to exist in a state that violates
|
||
|
# any number of deferred foreign key constraints.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-29604-30395 However, COMMIT will fail as long as
|
||
|
# foreign key constraints remain in violation.
|
||
|
#
|
||
|
proc test_efkey_34 {tn isError sql} {
|
||
|
do_test e_fkey-32.$tn "
|
||
|
catchsql {$sql}
|
||
|
" [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
|
||
|
}
|
||
|
drop_all_tables
|
||
|
|
||
|
test_efkey_34 1 0 {
|
||
|
CREATE TABLE ll(k PRIMARY KEY);
|
||
|
CREATE TABLE kk(c REFERENCES ll DEFERRABLE INITIALLY DEFERRED);
|
||
|
}
|
||
|
test_efkey_34 2 0 "BEGIN"
|
||
|
test_efkey_34 3 0 "INSERT INTO kk VALUES(5)"
|
||
|
test_efkey_34 4 0 "INSERT INTO kk VALUES(10)"
|
||
|
test_efkey_34 5 1 "COMMIT"
|
||
|
test_efkey_34 6 0 "INSERT INTO ll VALUES(10)"
|
||
|
test_efkey_34 7 1 "COMMIT"
|
||
|
test_efkey_34 8 0 "INSERT INTO ll VALUES(5)"
|
||
|
test_efkey_34 9 0 "COMMIT"
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# When not running inside a transaction, a deferred constraint is similar
|
||
|
# to an immediate constraint (violations are reported immediately).
|
||
|
#
|
||
|
# EVIDENCE-OF: R-56844-61705 If the current statement is not inside an
|
||
|
# explicit transaction (a BEGIN/COMMIT/ROLLBACK block), then an implicit
|
||
|
# transaction is committed as soon as the statement has finished
|
||
|
# executing. In this case deferred constraints behave the same as
|
||
|
# immediate constraints.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
proc test_efkey_35 {tn isError sql} {
|
||
|
do_test e_fkey-33.$tn "
|
||
|
catchsql {$sql}
|
||
|
" [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
|
||
|
}
|
||
|
do_test e_fkey-33.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x, y);
|
||
|
CREATE UNIQUE INDEX pi ON parent(x, y);
|
||
|
CREATE TABLE child(a, b,
|
||
|
FOREIGN KEY(a, b) REFERENCES parent(x, y) DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')"
|
||
|
test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')"
|
||
|
test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')"
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-12782-61841
|
||
|
#
|
||
|
# Test that an FK constraint is made deferred by adding the following
|
||
|
# to the definition:
|
||
|
#
|
||
|
# DEFERRABLE INITIALLY DEFERRED
|
||
|
#
|
||
|
# EVIDENCE-OF: R-09005-28791
|
||
|
#
|
||
|
# Also test that adding any of the following to a foreign key definition
|
||
|
# makes the constraint IMMEDIATE:
|
||
|
#
|
||
|
# NOT DEFERRABLE INITIALLY DEFERRED
|
||
|
# NOT DEFERRABLE INITIALLY IMMEDIATE
|
||
|
# NOT DEFERRABLE
|
||
|
# DEFERRABLE INITIALLY IMMEDIATE
|
||
|
# DEFERRABLE
|
||
|
#
|
||
|
# Foreign keys are IMMEDIATE by default (if there is no DEFERRABLE or NOT
|
||
|
# DEFERRABLE clause).
|
||
|
#
|
||
|
# EVIDENCE-OF: R-35290-16460 Foreign key constraints are immediate by
|
||
|
# default.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-30323-21917 Each foreign key constraint in SQLite is
|
||
|
# classified as either immediate or deferred.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-34.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x, y, z, PRIMARY KEY(x,y,z));
|
||
|
CREATE TABLE c1(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
CREATE TABLE c2(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY IMMEDIATE
|
||
|
);
|
||
|
CREATE TABLE c3(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE
|
||
|
);
|
||
|
CREATE TABLE c4(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY IMMEDIATE
|
||
|
);
|
||
|
CREATE TABLE c5(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE
|
||
|
);
|
||
|
CREATE TABLE c6(a, b, c, FOREIGN KEY(a, b, c) REFERENCES parent);
|
||
|
|
||
|
-- This FK constraint is the only deferrable one.
|
||
|
CREATE TABLE c7(a, b, c,
|
||
|
FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
|
||
|
INSERT INTO parent VALUES('a', 'b', 'c');
|
||
|
INSERT INTO parent VALUES('d', 'e', 'f');
|
||
|
INSERT INTO parent VALUES('g', 'h', 'i');
|
||
|
INSERT INTO parent VALUES('j', 'k', 'l');
|
||
|
INSERT INTO parent VALUES('m', 'n', 'o');
|
||
|
INSERT INTO parent VALUES('p', 'q', 'r');
|
||
|
INSERT INTO parent VALUES('s', 't', 'u');
|
||
|
|
||
|
INSERT INTO c1 VALUES('a', 'b', 'c');
|
||
|
INSERT INTO c2 VALUES('d', 'e', 'f');
|
||
|
INSERT INTO c3 VALUES('g', 'h', 'i');
|
||
|
INSERT INTO c4 VALUES('j', 'k', 'l');
|
||
|
INSERT INTO c5 VALUES('m', 'n', 'o');
|
||
|
INSERT INTO c6 VALUES('p', 'q', 'r');
|
||
|
INSERT INTO c7 VALUES('s', 't', 'u');
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
proc test_efkey_29 {tn sql isError} {
|
||
|
do_test e_fkey-34.$tn "catchsql {$sql}" [
|
||
|
lindex {{0 {}} {1 {foreign key constraint failed}}} $isError
|
||
|
]
|
||
|
}
|
||
|
test_efkey_29 2 "BEGIN" 0
|
||
|
test_efkey_29 3 "DELETE FROM parent WHERE x = 'a'" 1
|
||
|
test_efkey_29 4 "DELETE FROM parent WHERE x = 'd'" 1
|
||
|
test_efkey_29 5 "DELETE FROM parent WHERE x = 'g'" 1
|
||
|
test_efkey_29 6 "DELETE FROM parent WHERE x = 'j'" 1
|
||
|
test_efkey_29 7 "DELETE FROM parent WHERE x = 'm'" 1
|
||
|
test_efkey_29 8 "DELETE FROM parent WHERE x = 'p'" 1
|
||
|
test_efkey_29 9 "DELETE FROM parent WHERE x = 's'" 0
|
||
|
test_efkey_29 10 "COMMIT" 1
|
||
|
test_efkey_29 11 "ROLLBACK" 0
|
||
|
|
||
|
test_efkey_29 9 "BEGIN" 0
|
||
|
test_efkey_29 10 "UPDATE parent SET z = 'z' WHERE z = 'c'" 1
|
||
|
test_efkey_29 11 "UPDATE parent SET z = 'z' WHERE z = 'f'" 1
|
||
|
test_efkey_29 12 "UPDATE parent SET z = 'z' WHERE z = 'i'" 1
|
||
|
test_efkey_29 13 "UPDATE parent SET z = 'z' WHERE z = 'l'" 1
|
||
|
test_efkey_29 14 "UPDATE parent SET z = 'z' WHERE z = 'o'" 1
|
||
|
test_efkey_29 15 "UPDATE parent SET z = 'z' WHERE z = 'r'" 1
|
||
|
test_efkey_29 16 "UPDATE parent SET z = 'z' WHERE z = 'u'" 0
|
||
|
test_efkey_29 17 "COMMIT" 1
|
||
|
test_efkey_29 18 "ROLLBACK" 0
|
||
|
|
||
|
test_efkey_29 17 "BEGIN" 0
|
||
|
test_efkey_29 18 "INSERT INTO c1 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 19 "INSERT INTO c2 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 20 "INSERT INTO c3 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 21 "INSERT INTO c4 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 22 "INSERT INTO c5 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 22 "INSERT INTO c6 VALUES(1, 2, 3)" 1
|
||
|
test_efkey_29 22 "INSERT INTO c7 VALUES(1, 2, 3)" 0
|
||
|
test_efkey_29 23 "COMMIT" 1
|
||
|
test_efkey_29 24 "INSERT INTO parent VALUES(1, 2, 3)" 0
|
||
|
test_efkey_29 25 "COMMIT" 0
|
||
|
|
||
|
test_efkey_29 26 "BEGIN" 0
|
||
|
test_efkey_29 27 "UPDATE c1 SET a = 10" 1
|
||
|
test_efkey_29 28 "UPDATE c2 SET a = 10" 1
|
||
|
test_efkey_29 29 "UPDATE c3 SET a = 10" 1
|
||
|
test_efkey_29 30 "UPDATE c4 SET a = 10" 1
|
||
|
test_efkey_29 31 "UPDATE c5 SET a = 10" 1
|
||
|
test_efkey_29 31 "UPDATE c6 SET a = 10" 1
|
||
|
test_efkey_29 31 "UPDATE c7 SET a = 10" 0
|
||
|
test_efkey_29 32 "COMMIT" 1
|
||
|
test_efkey_29 33 "ROLLBACK" 0
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-24499-57071
|
||
|
#
|
||
|
# Test an example from foreignkeys.html dealing with a deferred foreign
|
||
|
# key constraint.
|
||
|
#
|
||
|
do_test e_fkey-35.1 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER REFERENCES artist(artistid) DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-35.2 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
INSERT INTO track VALUES(1, 'White Christmas', 5);
|
||
|
}
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-35.3 {
|
||
|
execsql {
|
||
|
INSERT INTO artist VALUES(5, 'Bing Crosby');
|
||
|
COMMIT;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Verify that a nested savepoint may be released without satisfying
|
||
|
# deferred foreign key constraints.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-07223-48323 A nested savepoint transaction may be
|
||
|
# RELEASEd while the database is in a state that does not satisfy a
|
||
|
# deferred foreign key constraint.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-36.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE t1(a PRIMARY KEY,
|
||
|
b REFERENCES t1 DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
INSERT INTO t1 VALUES(1, 1);
|
||
|
INSERT INTO t1 VALUES(2, 2);
|
||
|
INSERT INTO t1 VALUES(3, 3);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-36.2 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
SAVEPOINT one;
|
||
|
INSERT INTO t1 VALUES(4, 5);
|
||
|
RELEASE one;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-36.3 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-36.4 {
|
||
|
execsql {
|
||
|
UPDATE t1 SET a = 5 WHERE a = 4;
|
||
|
COMMIT;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Check that a transaction savepoint (an outermost savepoint opened when
|
||
|
# the database was in auto-commit mode) cannot be released without
|
||
|
# satisfying deferred foreign key constraints. It may be rolled back.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-44295-13823 A transaction savepoint (a non-nested
|
||
|
# savepoint that was opened while there was not currently an open
|
||
|
# transaction), on the other hand, is subject to the same restrictions
|
||
|
# as a COMMIT - attempting to RELEASE it while the database is in such a
|
||
|
# state will fail.
|
||
|
#
|
||
|
do_test e_fkey-37.1 {
|
||
|
execsql {
|
||
|
SAVEPOINT one;
|
||
|
SAVEPOINT two;
|
||
|
INSERT INTO t1 VALUES(6, 7);
|
||
|
RELEASE two;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-37.2 {
|
||
|
catchsql {RELEASE one}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-37.3 {
|
||
|
execsql {
|
||
|
UPDATE t1 SET a = 7 WHERE a = 6;
|
||
|
RELEASE one;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-37.4 {
|
||
|
execsql {
|
||
|
SAVEPOINT one;
|
||
|
SAVEPOINT two;
|
||
|
INSERT INTO t1 VALUES(9, 10);
|
||
|
RELEASE two;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-37.5 {
|
||
|
catchsql {RELEASE one}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-37.6 {
|
||
|
execsql {ROLLBACK TO one ; RELEASE one}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that if a COMMIT operation fails due to deferred foreign key
|
||
|
# constraints, any nested savepoints remain open.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-37736-42616 If a COMMIT statement (or the RELEASE of a
|
||
|
# transaction SAVEPOINT) fails because the database is currently in a
|
||
|
# state that violates a deferred foreign key constraint and there are
|
||
|
# currently nested savepoints, the nested savepoints remain open.
|
||
|
#
|
||
|
do_test e_fkey-38.1 {
|
||
|
execsql {
|
||
|
DELETE FROM t1 WHERE a>3;
|
||
|
SELECT * FROM t1;
|
||
|
}
|
||
|
} {1 1 2 2 3 3}
|
||
|
do_test e_fkey-38.2 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
INSERT INTO t1 VALUES(4, 4);
|
||
|
SAVEPOINT one;
|
||
|
INSERT INTO t1 VALUES(5, 6);
|
||
|
SELECT * FROM t1;
|
||
|
}
|
||
|
} {1 1 2 2 3 3 4 4 5 6}
|
||
|
do_test e_fkey-38.3 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-38.4 {
|
||
|
execsql {
|
||
|
ROLLBACK TO one;
|
||
|
COMMIT;
|
||
|
SELECT * FROM t1;
|
||
|
}
|
||
|
} {1 1 2 2 3 3 4 4}
|
||
|
|
||
|
do_test e_fkey-38.5 {
|
||
|
execsql {
|
||
|
SAVEPOINT a;
|
||
|
INSERT INTO t1 VALUES(5, 5);
|
||
|
SAVEPOINT b;
|
||
|
INSERT INTO t1 VALUES(6, 7);
|
||
|
SAVEPOINT c;
|
||
|
INSERT INTO t1 VALUES(7, 8);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-38.6 {
|
||
|
catchsql {RELEASE a}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-38.7 {
|
||
|
execsql {ROLLBACK TO c}
|
||
|
catchsql {RELEASE a}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-38.8 {
|
||
|
execsql {
|
||
|
ROLLBACK TO b;
|
||
|
RELEASE a;
|
||
|
SELECT * FROM t1;
|
||
|
}
|
||
|
} {1 1 2 2 3 3 4 4 5 5}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 4.3: ON DELETE and ON UPDATE Actions
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that configured ON DELETE and ON UPDATE actions take place when
|
||
|
# deleting or modifying rows of the parent table, respectively.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-48270-44282 Foreign key ON DELETE and ON UPDATE clauses
|
||
|
# are used to configure actions that take place when deleting rows from
|
||
|
# the parent table (ON DELETE), or modifying the parent key values of
|
||
|
# existing rows (ON UPDATE).
|
||
|
#
|
||
|
# Test that a single FK constraint may have different actions configured
|
||
|
# for ON DELETE and ON UPDATE.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-48124-63225 A single foreign key constraint may have
|
||
|
# different actions configured for ON DELETE and ON UPDATE.
|
||
|
#
|
||
|
do_test e_fkey-39.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE p(a, b PRIMARY KEY, c);
|
||
|
CREATE TABLE c1(d, e, f DEFAULT 'k0' REFERENCES p
|
||
|
ON UPDATE SET DEFAULT
|
||
|
ON DELETE SET NULL
|
||
|
);
|
||
|
|
||
|
INSERT INTO p VALUES(0, 'k0', '');
|
||
|
INSERT INTO p VALUES(1, 'k1', 'I');
|
||
|
INSERT INTO p VALUES(2, 'k2', 'II');
|
||
|
INSERT INTO p VALUES(3, 'k3', 'III');
|
||
|
|
||
|
INSERT INTO c1 VALUES(1, 'xx', 'k1');
|
||
|
INSERT INTO c1 VALUES(2, 'xx', 'k2');
|
||
|
INSERT INTO c1 VALUES(3, 'xx', 'k3');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-39.2 {
|
||
|
execsql {
|
||
|
UPDATE p SET b = 'k4' WHERE a = 1;
|
||
|
SELECT * FROM c1;
|
||
|
}
|
||
|
} {1 xx k0 2 xx k2 3 xx k3}
|
||
|
do_test e_fkey-39.3 {
|
||
|
execsql {
|
||
|
DELETE FROM p WHERE a = 2;
|
||
|
SELECT * FROM c1;
|
||
|
}
|
||
|
} {1 xx k0 2 xx {} 3 xx k3}
|
||
|
do_test e_fkey-39.4 {
|
||
|
execsql {
|
||
|
CREATE UNIQUE INDEX pi ON p(c);
|
||
|
REPLACE INTO p VALUES(5, 'k5', 'III');
|
||
|
SELECT * FROM c1;
|
||
|
}
|
||
|
} {1 xx k0 2 xx {} 3 xx {}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Each foreign key in the system has an ON UPDATE and ON DELETE action,
|
||
|
# either "NO ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE".
|
||
|
#
|
||
|
# EVIDENCE-OF: R-33326-45252 The ON DELETE and ON UPDATE action
|
||
|
# associated with each foreign key in an SQLite database is one of "NO
|
||
|
# ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE".
|
||
|
#
|
||
|
# If none is specified explicitly, "NO ACTION" is the default.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-19803-45884 If an action is not explicitly specified,
|
||
|
# it defaults to "NO ACTION".
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-40.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY, y);
|
||
|
CREATE TABLE child1(a,
|
||
|
b REFERENCES parent ON UPDATE NO ACTION ON DELETE RESTRICT
|
||
|
);
|
||
|
CREATE TABLE child2(a,
|
||
|
b REFERENCES parent ON UPDATE RESTRICT ON DELETE SET NULL
|
||
|
);
|
||
|
CREATE TABLE child3(a,
|
||
|
b REFERENCES parent ON UPDATE SET NULL ON DELETE SET DEFAULT
|
||
|
);
|
||
|
CREATE TABLE child4(a,
|
||
|
b REFERENCES parent ON UPDATE SET DEFAULT ON DELETE CASCADE
|
||
|
);
|
||
|
|
||
|
-- Create some foreign keys that use the default action - "NO ACTION"
|
||
|
CREATE TABLE child5(a, b REFERENCES parent ON UPDATE CASCADE);
|
||
|
CREATE TABLE child6(a, b REFERENCES parent ON DELETE RESTRICT);
|
||
|
CREATE TABLE child7(a, b REFERENCES parent ON DELETE NO ACTION);
|
||
|
CREATE TABLE child8(a, b REFERENCES parent ON UPDATE NO ACTION);
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
foreach {tn zTab lRes} {
|
||
|
2 child1 {0 0 parent b {} {NO ACTION} RESTRICT NONE}
|
||
|
3 child2 {0 0 parent b {} RESTRICT {SET NULL} NONE}
|
||
|
4 child3 {0 0 parent b {} {SET NULL} {SET DEFAULT} NONE}
|
||
|
5 child4 {0 0 parent b {} {SET DEFAULT} CASCADE NONE}
|
||
|
6 child5 {0 0 parent b {} CASCADE {NO ACTION} NONE}
|
||
|
7 child6 {0 0 parent b {} {NO ACTION} RESTRICT NONE}
|
||
|
8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE}
|
||
|
9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE}
|
||
|
} {
|
||
|
do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that "NO ACTION" means that nothing happens to a child row when
|
||
|
# it's parent row is updated or deleted.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-19971-54976 Configuring "NO ACTION" means just that:
|
||
|
# when a parent key is modified or deleted from the database, no special
|
||
|
# action is taken.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-41.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(p1, p2, PRIMARY KEY(p1, p2));
|
||
|
CREATE TABLE child(c1, c2,
|
||
|
FOREIGN KEY(c1, c2) REFERENCES parent
|
||
|
ON UPDATE NO ACTION
|
||
|
ON DELETE NO ACTION
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
INSERT INTO parent VALUES('j', 'k');
|
||
|
INSERT INTO parent VALUES('l', 'm');
|
||
|
INSERT INTO child VALUES('j', 'k');
|
||
|
INSERT INTO child VALUES('l', 'm');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-41.2 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
UPDATE parent SET p1='k' WHERE p1='j';
|
||
|
DELETE FROM parent WHERE p1='l';
|
||
|
SELECT * FROM child;
|
||
|
}
|
||
|
} {j k l m}
|
||
|
do_test e_fkey-41.3 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-41.4 {
|
||
|
execsql ROLLBACK
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that "RESTRICT" means the application is prohibited from deleting
|
||
|
# or updating a parent table row when there exists one or more child keys
|
||
|
# mapped to it.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-04272-38653 The "RESTRICT" action means that the
|
||
|
# application is prohibited from deleting (for ON DELETE RESTRICT) or
|
||
|
# modifying (for ON UPDATE RESTRICT) a parent key when there exists one
|
||
|
# or more child keys mapped to it.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-41.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(p1, p2);
|
||
|
CREATE UNIQUE INDEX parent_i ON parent(p1, p2);
|
||
|
CREATE TABLE child1(c1, c2,
|
||
|
FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON DELETE RESTRICT
|
||
|
);
|
||
|
CREATE TABLE child2(c1, c2,
|
||
|
FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON UPDATE RESTRICT
|
||
|
);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-41.2 {
|
||
|
execsql {
|
||
|
INSERT INTO parent VALUES('a', 'b');
|
||
|
INSERT INTO parent VALUES('c', 'd');
|
||
|
INSERT INTO child1 VALUES('b', 'a');
|
||
|
INSERT INTO child2 VALUES('d', 'c');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-41.3 {
|
||
|
catchsql { DELETE FROM parent WHERE p1 = 'a' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-41.4 {
|
||
|
catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that RESTRICT is slightly different from NO ACTION for IMMEDIATE
|
||
|
# constraints, in that it is enforced immediately, not at the end of the
|
||
|
# statement.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-37997-42187 The difference between the effect of a
|
||
|
# RESTRICT action and normal foreign key constraint enforcement is that
|
||
|
# the RESTRICT action processing happens as soon as the field is updated
|
||
|
# - not at the end of the current statement as it would with an
|
||
|
# immediate constraint, or at the end of the current transaction as it
|
||
|
# would with a deferred constraint.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-42.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT);
|
||
|
CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION);
|
||
|
|
||
|
INSERT INTO parent VALUES('key1');
|
||
|
INSERT INTO parent VALUES('key2');
|
||
|
INSERT INTO child1 VALUES('key1');
|
||
|
INSERT INTO child2 VALUES('key2');
|
||
|
|
||
|
CREATE TRIGGER parent_t AFTER UPDATE ON parent BEGIN
|
||
|
UPDATE child1 set c = new.x WHERE c = old.x;
|
||
|
UPDATE child2 set c = new.x WHERE c = old.x;
|
||
|
END;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-42.2 {
|
||
|
catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-42.3 {
|
||
|
execsql {
|
||
|
UPDATE parent SET x = 'key two' WHERE x = 'key2';
|
||
|
SELECT * FROM child2;
|
||
|
}
|
||
|
} {{key two}}
|
||
|
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-42.4 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT);
|
||
|
CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION);
|
||
|
|
||
|
INSERT INTO parent VALUES('key1');
|
||
|
INSERT INTO parent VALUES('key2');
|
||
|
INSERT INTO child1 VALUES('key1');
|
||
|
INSERT INTO child2 VALUES('key2');
|
||
|
|
||
|
CREATE TRIGGER parent_t AFTER DELETE ON parent BEGIN
|
||
|
UPDATE child1 SET c = NULL WHERE c = old.x;
|
||
|
UPDATE child2 SET c = NULL WHERE c = old.x;
|
||
|
END;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-42.5 {
|
||
|
catchsql { DELETE FROM parent WHERE x = 'key1' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-42.6 {
|
||
|
execsql {
|
||
|
DELETE FROM parent WHERE x = 'key2';
|
||
|
SELECT * FROM child2;
|
||
|
}
|
||
|
} {{}}
|
||
|
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-42.7 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT);
|
||
|
CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION);
|
||
|
|
||
|
INSERT INTO parent VALUES('key1');
|
||
|
INSERT INTO parent VALUES('key2');
|
||
|
INSERT INTO child1 VALUES('key1');
|
||
|
INSERT INTO child2 VALUES('key2');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-42.8 {
|
||
|
catchsql { REPLACE INTO parent VALUES('key1') }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-42.9 {
|
||
|
execsql {
|
||
|
REPLACE INTO parent VALUES('key2');
|
||
|
SELECT * FROM child2;
|
||
|
}
|
||
|
} {key2}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that RESTRICT is enforced immediately, even for a DEFERRED constraint.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-24179-60523 Even if the foreign key constraint it is
|
||
|
# attached to is deferred, configuring a RESTRICT action causes SQLite
|
||
|
# to return an error immediately if a parent key with dependent child
|
||
|
# keys is deleted or modified.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-43.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
|
||
|
INSERT INTO parent VALUES('key1');
|
||
|
INSERT INTO parent VALUES('key2');
|
||
|
INSERT INTO child1 VALUES('key1');
|
||
|
INSERT INTO child2 VALUES('key2');
|
||
|
BEGIN;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-43.2 {
|
||
|
catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-43.3 {
|
||
|
execsql { UPDATE parent SET x = 'key two' WHERE x = 'key2' }
|
||
|
} {}
|
||
|
do_test e_fkey-43.4 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-43.5 {
|
||
|
execsql {
|
||
|
UPDATE child2 SET c = 'key two';
|
||
|
COMMIT;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-43.6 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
|
||
|
INSERT INTO parent VALUES('key1');
|
||
|
INSERT INTO parent VALUES('key2');
|
||
|
INSERT INTO child1 VALUES('key1');
|
||
|
INSERT INTO child2 VALUES('key2');
|
||
|
BEGIN;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-43.7 {
|
||
|
catchsql { DELETE FROM parent WHERE x = 'key1' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-43.8 {
|
||
|
execsql { DELETE FROM parent WHERE x = 'key2' }
|
||
|
} {}
|
||
|
do_test e_fkey-43.9 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-43.10 {
|
||
|
execsql {
|
||
|
UPDATE child2 SET c = NULL;
|
||
|
COMMIT;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test SET NULL actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-03353-05327 If the configured action is "SET NULL",
|
||
|
# then when a parent key is deleted (for ON DELETE SET NULL) or modified
|
||
|
# (for ON UPDATE SET NULL), the child key columns of all rows in the
|
||
|
# child table that mapped to the parent key are set to contain SQL NULL
|
||
|
# values.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-44.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE pA(x PRIMARY KEY);
|
||
|
CREATE TABLE cA(c REFERENCES pA ON DELETE SET NULL);
|
||
|
CREATE TABLE cB(c REFERENCES pA ON UPDATE SET NULL);
|
||
|
|
||
|
INSERT INTO pA VALUES(X'ABCD');
|
||
|
INSERT INTO pA VALUES(X'1234');
|
||
|
INSERT INTO cA VALUES(X'ABCD');
|
||
|
INSERT INTO cB VALUES(X'1234');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-44.2 {
|
||
|
execsql {
|
||
|
DELETE FROM pA WHERE rowid = 1;
|
||
|
SELECT quote(x) FROM pA;
|
||
|
}
|
||
|
} {X'1234'}
|
||
|
do_test e_fkey-44.3 {
|
||
|
execsql {
|
||
|
SELECT quote(c) FROM cA;
|
||
|
}
|
||
|
} {NULL}
|
||
|
do_test e_fkey-44.4 {
|
||
|
execsql {
|
||
|
UPDATE pA SET x = X'8765' WHERE rowid = 2;
|
||
|
SELECT quote(x) FROM pA;
|
||
|
}
|
||
|
} {X'8765'}
|
||
|
do_test e_fkey-44.5 {
|
||
|
execsql { SELECT quote(c) FROM cB }
|
||
|
} {NULL}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test SET DEFAULT actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-43054-54832 The "SET DEFAULT" actions are similar to
|
||
|
# "SET NULL", except that each of the child key columns is set to
|
||
|
# contain the columns default value instead of NULL.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-45.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE pA(x PRIMARY KEY);
|
||
|
CREATE TABLE cA(c DEFAULT X'0000' REFERENCES pA ON DELETE SET DEFAULT);
|
||
|
CREATE TABLE cB(c DEFAULT X'9999' REFERENCES pA ON UPDATE SET DEFAULT);
|
||
|
|
||
|
INSERT INTO pA(rowid, x) VALUES(1, X'0000');
|
||
|
INSERT INTO pA(rowid, x) VALUES(2, X'9999');
|
||
|
INSERT INTO pA(rowid, x) VALUES(3, X'ABCD');
|
||
|
INSERT INTO pA(rowid, x) VALUES(4, X'1234');
|
||
|
|
||
|
INSERT INTO cA VALUES(X'ABCD');
|
||
|
INSERT INTO cB VALUES(X'1234');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-45.2 {
|
||
|
execsql {
|
||
|
DELETE FROM pA WHERE rowid = 3;
|
||
|
SELECT quote(x) FROM pA ORDER BY rowid;
|
||
|
}
|
||
|
} {X'0000' X'9999' X'1234'}
|
||
|
do_test e_fkey-45.3 {
|
||
|
execsql { SELECT quote(c) FROM cA }
|
||
|
} {X'0000'}
|
||
|
do_test e_fkey-45.4 {
|
||
|
execsql {
|
||
|
UPDATE pA SET x = X'8765' WHERE rowid = 4;
|
||
|
SELECT quote(x) FROM pA ORDER BY rowid;
|
||
|
}
|
||
|
} {X'0000' X'9999' X'8765'}
|
||
|
do_test e_fkey-45.5 {
|
||
|
execsql { SELECT quote(c) FROM cB }
|
||
|
} {X'9999'}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test ON DELETE CASCADE actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or
|
||
|
# update operation on the parent key to each dependent child key.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-61809-62207 For an "ON DELETE CASCADE" action, this
|
||
|
# means that each row in the child table that was associated with the
|
||
|
# deleted parent row is also deleted.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-46.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE p1(a, b UNIQUE);
|
||
|
CREATE TABLE c1(c REFERENCES p1(b) ON DELETE CASCADE, d);
|
||
|
INSERT INTO p1 VALUES(NULL, NULL);
|
||
|
INSERT INTO p1 VALUES(4, 4);
|
||
|
INSERT INTO p1 VALUES(5, 5);
|
||
|
INSERT INTO c1 VALUES(NULL, NULL);
|
||
|
INSERT INTO c1 VALUES(4, 4);
|
||
|
INSERT INTO c1 VALUES(5, 5);
|
||
|
SELECT count(*) FROM c1;
|
||
|
}
|
||
|
} {3}
|
||
|
do_test e_fkey-46.2 {
|
||
|
execsql {
|
||
|
DELETE FROM p1 WHERE a = 4;
|
||
|
SELECT d, c FROM c1;
|
||
|
}
|
||
|
} {{} {} 5 5}
|
||
|
do_test e_fkey-46.3 {
|
||
|
execsql {
|
||
|
DELETE FROM p1;
|
||
|
SELECT d, c FROM c1;
|
||
|
}
|
||
|
} {{} {}}
|
||
|
do_test e_fkey-46.4 {
|
||
|
execsql { SELECT * FROM p1 }
|
||
|
} {}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test ON UPDATE CASCADE actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-13877-64542 For an "ON UPDATE CASCADE" action, it means
|
||
|
# that the values stored in each dependent child key are modified to
|
||
|
# match the new parent key values.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or
|
||
|
# update operation on the parent key to each dependent child key.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-47.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE p1(a, b UNIQUE);
|
||
|
CREATE TABLE c1(c REFERENCES p1(b) ON UPDATE CASCADE, d);
|
||
|
INSERT INTO p1 VALUES(NULL, NULL);
|
||
|
INSERT INTO p1 VALUES(4, 4);
|
||
|
INSERT INTO p1 VALUES(5, 5);
|
||
|
INSERT INTO c1 VALUES(NULL, NULL);
|
||
|
INSERT INTO c1 VALUES(4, 4);
|
||
|
INSERT INTO c1 VALUES(5, 5);
|
||
|
SELECT count(*) FROM c1;
|
||
|
}
|
||
|
} {3}
|
||
|
do_test e_fkey-47.2 {
|
||
|
execsql {
|
||
|
UPDATE p1 SET b = 10 WHERE b = 5;
|
||
|
SELECT d, c FROM c1;
|
||
|
}
|
||
|
} {{} {} 4 4 5 10}
|
||
|
do_test e_fkey-47.3 {
|
||
|
execsql {
|
||
|
UPDATE p1 SET b = 11 WHERE b = 4;
|
||
|
SELECT d, c FROM c1;
|
||
|
}
|
||
|
} {{} {} 4 11 5 10}
|
||
|
do_test e_fkey-47.4 {
|
||
|
execsql {
|
||
|
UPDATE p1 SET b = 6 WHERE b IS NULL;
|
||
|
SELECT d, c FROM c1;
|
||
|
}
|
||
|
} {{} {} 4 11 5 10}
|
||
|
do_test e_fkey-46.5 {
|
||
|
execsql { SELECT * FROM p1 }
|
||
|
} {{} 6 4 11 5 10}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-65058-57158
|
||
|
#
|
||
|
# Test an example from the "ON DELETE and ON UPDATE Actions" section
|
||
|
# of foreignkeys.html.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-48.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER REFERENCES artist(artistid) ON UPDATE CASCADE
|
||
|
);
|
||
|
|
||
|
INSERT INTO artist VALUES(1, 'Dean Martin');
|
||
|
INSERT INTO artist VALUES(2, 'Frank Sinatra');
|
||
|
INSERT INTO track VALUES(11, 'That''s Amore', 1);
|
||
|
INSERT INTO track VALUES(12, 'Christmas Blues', 1);
|
||
|
INSERT INTO track VALUES(13, 'My Way', 2);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-48.2 {
|
||
|
execsql {
|
||
|
UPDATE artist SET artistid = 100 WHERE artistname = 'Dean Martin';
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-48.3 {
|
||
|
execsql { SELECT * FROM artist }
|
||
|
} {2 {Frank Sinatra} 100 {Dean Martin}}
|
||
|
do_test e_fkey-48.4 {
|
||
|
execsql { SELECT * FROM track }
|
||
|
} {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Verify that adding an FK action does not absolve the user of the
|
||
|
# requirement not to violate the foreign key constraint.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-53968-51642 Configuring an ON UPDATE or ON DELETE
|
||
|
# action does not mean that the foreign key constraint does not need to
|
||
|
# be satisfied.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-49.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(a COLLATE nocase, b, c, PRIMARY KEY(c, a));
|
||
|
CREATE TABLE child(d DEFAULT 'a', e, f DEFAULT 'c',
|
||
|
FOREIGN KEY(f, d) REFERENCES parent ON UPDATE SET DEFAULT
|
||
|
);
|
||
|
|
||
|
INSERT INTO parent VALUES('A', 'b', 'c');
|
||
|
INSERT INTO parent VALUES('ONE', 'two', 'three');
|
||
|
INSERT INTO child VALUES('one', 'two', 'three');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-49.2 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
UPDATE parent SET a = '' WHERE a = 'oNe';
|
||
|
SELECT * FROM child;
|
||
|
}
|
||
|
} {a two c}
|
||
|
do_test e_fkey-49.3 {
|
||
|
execsql {
|
||
|
ROLLBACK;
|
||
|
DELETE FROM parent WHERE a = 'A';
|
||
|
SELECT * FROM parent;
|
||
|
}
|
||
|
} {ONE two three}
|
||
|
do_test e_fkey-49.4 {
|
||
|
catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-11856-19836
|
||
|
#
|
||
|
# Test an example from the "ON DELETE and ON UPDATE Actions" section
|
||
|
# of foreignkeys.html. This example shows that adding an "ON DELETE DEFAULT"
|
||
|
# clause does not abrogate the need to satisfy the foreign key constraint
|
||
|
# (R-28220-46694).
|
||
|
#
|
||
|
# EVIDENCE-OF: R-28220-46694 For example, if an "ON DELETE SET DEFAULT"
|
||
|
# action is configured, but there is no row in the parent table that
|
||
|
# corresponds to the default values of the child key columns, deleting a
|
||
|
# parent key while dependent child keys exist still causes a foreign key
|
||
|
# violation.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-50.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE artist(
|
||
|
artistid INTEGER PRIMARY KEY,
|
||
|
artistname TEXT
|
||
|
);
|
||
|
CREATE TABLE track(
|
||
|
trackid INTEGER,
|
||
|
trackname TEXT,
|
||
|
trackartist INTEGER DEFAULT 0 REFERENCES artist(artistid) ON DELETE SET DEFAULT
|
||
|
);
|
||
|
INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
|
||
|
INSERT INTO track VALUES(14, 'Mr. Bojangles', 3);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-50.2 {
|
||
|
catchsql { DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.' }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-50.3 {
|
||
|
execsql {
|
||
|
INSERT INTO artist VALUES(0, 'Unknown Artist');
|
||
|
DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.';
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-50.4 {
|
||
|
execsql { SELECT * FROM artist }
|
||
|
} {0 {Unknown Artist}}
|
||
|
do_test e_fkey-50.5 {
|
||
|
execsql { SELECT * FROM track }
|
||
|
} {14 {Mr. Bojangles} 0}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-09564-22170
|
||
|
#
|
||
|
# Check that the order of steps in an UPDATE or DELETE on a parent
|
||
|
# table is as follows:
|
||
|
#
|
||
|
# 1. Execute applicable BEFORE trigger programs,
|
||
|
# 2. Check local (non foreign key) constraints,
|
||
|
# 3. Update or delete the row in the parent table,
|
||
|
# 4. Perform any required foreign key actions,
|
||
|
# 5. Execute applicable AFTER trigger programs.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-51.1 {
|
||
|
proc maxparent {args} { db one {SELECT max(x) FROM parent} }
|
||
|
db func maxparent maxparent
|
||
|
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
|
||
|
CREATE TRIGGER bu BEFORE UPDATE ON parent BEGIN
|
||
|
INSERT INTO parent VALUES(new.x-old.x);
|
||
|
END;
|
||
|
CREATE TABLE child(
|
||
|
a DEFAULT (maxparent()) REFERENCES parent ON UPDATE SET DEFAULT
|
||
|
);
|
||
|
CREATE TRIGGER au AFTER UPDATE ON parent BEGIN
|
||
|
INSERT INTO parent VALUES(new.x+old.x);
|
||
|
END;
|
||
|
|
||
|
INSERT INTO parent VALUES(1);
|
||
|
INSERT INTO child VALUES(1);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-51.2 {
|
||
|
execsql {
|
||
|
UPDATE parent SET x = 22;
|
||
|
SELECT * FROM parent ORDER BY rowid; SELECT 'xxx' ; SELECT a FROM child;
|
||
|
}
|
||
|
} {22 21 23 xxx 22}
|
||
|
do_test e_fkey-51.3 {
|
||
|
execsql {
|
||
|
DELETE FROM child;
|
||
|
DELETE FROM parent;
|
||
|
INSERT INTO parent VALUES(-1);
|
||
|
INSERT INTO child VALUES(-1);
|
||
|
UPDATE parent SET x = 22;
|
||
|
SELECT * FROM parent ORDER BY rowid; SELECT 'xxx' ; SELECT a FROM child;
|
||
|
}
|
||
|
} {22 23 21 xxx 23}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Verify that ON UPDATE actions only actually take place if the parent key
|
||
|
# is set to a new value that is distinct from the old value. The default
|
||
|
# collation sequence and affinity are used to determine if the new value
|
||
|
# is 'distinct' from the old or not.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-27383-10246 An ON UPDATE action is only taken if the
|
||
|
# values of the parent key are modified so that the new parent key
|
||
|
# values are not equal to the old.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-52.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE zeus(a INTEGER COLLATE NOCASE, b, PRIMARY KEY(a, b));
|
||
|
CREATE TABLE apollo(c, d,
|
||
|
FOREIGN KEY(c, d) REFERENCES zeus ON UPDATE CASCADE
|
||
|
);
|
||
|
INSERT INTO zeus VALUES('abc', 'xyz');
|
||
|
INSERT INTO apollo VALUES('ABC', 'xyz');
|
||
|
}
|
||
|
execsql {
|
||
|
UPDATE zeus SET a = 'aBc';
|
||
|
SELECT * FROM apollo;
|
||
|
}
|
||
|
} {ABC xyz}
|
||
|
do_test e_fkey-52.2 {
|
||
|
execsql {
|
||
|
UPDATE zeus SET a = 1, b = 1;
|
||
|
SELECT * FROM apollo;
|
||
|
}
|
||
|
} {1 1}
|
||
|
do_test e_fkey-52.3 {
|
||
|
execsql {
|
||
|
UPDATE zeus SET a = 1, b = 1;
|
||
|
SELECT typeof(c), c, typeof(d), d FROM apollo;
|
||
|
}
|
||
|
} {integer 1 integer 1}
|
||
|
do_test e_fkey-52.4 {
|
||
|
execsql {
|
||
|
UPDATE zeus SET a = '1';
|
||
|
SELECT typeof(c), c, typeof(d), d FROM apollo;
|
||
|
}
|
||
|
} {integer 1 integer 1}
|
||
|
do_test e_fkey-52.5 {
|
||
|
execsql {
|
||
|
UPDATE zeus SET b = '1';
|
||
|
SELECT typeof(c), c, typeof(d), d FROM apollo;
|
||
|
}
|
||
|
} {integer 1 text 1}
|
||
|
do_test e_fkey-52.6 {
|
||
|
execsql {
|
||
|
UPDATE zeus SET b = NULL;
|
||
|
SELECT typeof(c), c, typeof(d), d FROM apollo;
|
||
|
}
|
||
|
} {integer 1 null {}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-35129-58141
|
||
|
#
|
||
|
# Test an example from the "ON DELETE and ON UPDATE Actions" section
|
||
|
# of foreignkeys.html. This example demonstrates that ON UPDATE actions
|
||
|
# only take place if at least one parent key column is set to a value
|
||
|
# that is distinct from its previous value.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-53.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE parent(x PRIMARY KEY);
|
||
|
CREATE TABLE child(y REFERENCES parent ON UPDATE SET NULL);
|
||
|
INSERT INTO parent VALUES('key');
|
||
|
INSERT INTO child VALUES('key');
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-53.2 {
|
||
|
execsql {
|
||
|
UPDATE parent SET x = 'key';
|
||
|
SELECT IFNULL(y, 'null') FROM child;
|
||
|
}
|
||
|
} {key}
|
||
|
do_test e_fkey-53.3 {
|
||
|
execsql {
|
||
|
UPDATE parent SET x = 'key2';
|
||
|
SELECT IFNULL(y, 'null') FROM child;
|
||
|
}
|
||
|
} {null}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 5: CREATE, ALTER and DROP TABLE commands
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that parent keys are not checked when tables are created.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-36018-21755 The parent key definitions of foreign key
|
||
|
# constraints are not checked when a table is created.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-25384-39337 There is nothing stopping the user from
|
||
|
# creating a foreign key definition that refers to a parent table that
|
||
|
# does not exist, or to parent key columns that do not exist or are not
|
||
|
# collectively bound by a PRIMARY KEY or UNIQUE constraint.
|
||
|
#
|
||
|
# Child keys are checked to ensure all component columns exist. If parent
|
||
|
# key columns are explicitly specified, SQLite checks to make sure there
|
||
|
# are the same number of columns in the child and parent keys. (TODO: This
|
||
|
# is tested but does not correspond to any testable statement.)
|
||
|
#
|
||
|
# Also test that the above statements are true regardless of whether or not
|
||
|
# foreign keys are enabled: "A CREATE TABLE command operates the same whether
|
||
|
# or not foreign key constraints are enabled."
|
||
|
#
|
||
|
# EVIDENCE-OF: R-08908-23439 A CREATE TABLE command operates the same
|
||
|
# whether or not foreign key constraints are enabled.
|
||
|
#
|
||
|
foreach {tn zCreateTbl lRes} {
|
||
|
1 "CREATE TABLE t1(a, b REFERENCES t1)" {0 {}}
|
||
|
2 "CREATE TABLE t1(a, b REFERENCES t2)" {0 {}}
|
||
|
3 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1)" {0 {}}
|
||
|
4 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}}
|
||
|
5 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}}
|
||
|
6 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2(n,d))" {0 {}}
|
||
|
7 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1(a,b))" {0 {}}
|
||
|
|
||
|
A "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2)"
|
||
|
{1 {unknown column "c" in foreign key definition}}
|
||
|
B "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2(d))"
|
||
|
{1 {number of columns in foreign key does not match the number of columns in the referenced table}}
|
||
|
} {
|
||
|
do_test e_fkey-54.$tn.off {
|
||
|
drop_all_tables
|
||
|
execsql {PRAGMA foreign_keys = OFF}
|
||
|
catchsql $zCreateTbl
|
||
|
} $lRes
|
||
|
do_test e_fkey-54.$tn.on {
|
||
|
drop_all_tables
|
||
|
execsql {PRAGMA foreign_keys = ON}
|
||
|
catchsql $zCreateTbl
|
||
|
} $lRes
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# EVIDENCE-OF: R-47952-62498 It is not possible to use the "ALTER TABLE
|
||
|
# ... ADD COLUMN" syntax to add a column that includes a REFERENCES
|
||
|
# clause, unless the default value of the new column is NULL. Attempting
|
||
|
# to do so returns an error.
|
||
|
#
|
||
|
proc test_efkey_6 {tn zAlter isError} {
|
||
|
drop_all_tables
|
||
|
|
||
|
do_test e_fkey-56.$tn.1 "
|
||
|
execsql { CREATE TABLE tbl(a, b) }
|
||
|
[list catchsql $zAlter]
|
||
|
" [lindex {{0 {}} {1 {Cannot add a REFERENCES column with non-NULL default value}}} $isError]
|
||
|
|
||
|
}
|
||
|
|
||
|
test_efkey_6 1 "ALTER TABLE tbl ADD COLUMN c REFERENCES xx" 0
|
||
|
test_efkey_6 2 "ALTER TABLE tbl ADD COLUMN c DEFAULT NULL REFERENCES xx" 0
|
||
|
test_efkey_6 3 "ALTER TABLE tbl ADD COLUMN c DEFAULT 0 REFERENCES xx" 1
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that ALTER TABLE adjusts REFERENCES clauses when the parent table
|
||
|
# is RENAMED.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-47080-02069 If an "ALTER TABLE ... RENAME TO" command
|
||
|
# is used to rename a table that is the parent table of one or more
|
||
|
# foreign key constraints, the definitions of the foreign key
|
||
|
# constraints are modified to refer to the parent table by its new name
|
||
|
#
|
||
|
# Test that these adjustments are visible in the sqlite_master table.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-63827-54774 The text of the child CREATE TABLE
|
||
|
# statement or statements stored in the sqlite_master table are modified
|
||
|
# to reflect the new parent table name.
|
||
|
#
|
||
|
do_test e_fkey-56.1 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE 'p 1 "parent one"'(a REFERENCES 'p 1 "parent one"', b, PRIMARY KEY(b));
|
||
|
|
||
|
CREATE TABLE c1(c, d REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
|
||
|
CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
|
||
|
CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
|
||
|
|
||
|
INSERT INTO 'p 1 "parent one"' VALUES(1, 1);
|
||
|
INSERT INTO c1 VALUES(1, 1);
|
||
|
INSERT INTO c2 VALUES(1, 1);
|
||
|
INSERT INTO c3 VALUES(1, 1);
|
||
|
|
||
|
-- CREATE TABLE q(a, b, PRIMARY KEY(b));
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-56.2 {
|
||
|
execsql { ALTER TABLE 'p 1 "parent one"' RENAME TO p }
|
||
|
} {}
|
||
|
do_test e_fkey-56.3 {
|
||
|
execsql {
|
||
|
UPDATE p SET a = 'xxx', b = 'xxx';
|
||
|
SELECT * FROM p;
|
||
|
SELECT * FROM c1;
|
||
|
SELECT * FROM c2;
|
||
|
SELECT * FROM c3;
|
||
|
}
|
||
|
} {xxx xxx 1 xxx 1 xxx 1 xxx}
|
||
|
do_test e_fkey-56.4 {
|
||
|
execsql { SELECT sql FROM sqlite_master WHERE type = 'table'}
|
||
|
} [list \
|
||
|
{CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \
|
||
|
{CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \
|
||
|
{CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \
|
||
|
{CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \
|
||
|
]
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Check that a DROP TABLE does an implicit DELETE FROM. Which does not
|
||
|
# cause any triggers to fire, but does fire foreign key actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-14208-23986 If foreign key constraints are enabled when
|
||
|
# it is prepared, the DROP TABLE command performs an implicit DELETE to
|
||
|
# remove all rows from the table before dropping it.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-11078-03945 The implicit DELETE does not cause any SQL
|
||
|
# triggers to fire, but may invoke foreign key actions or constraint
|
||
|
# violations.
|
||
|
#
|
||
|
do_test e_fkey-57.1 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE p(a, b, PRIMARY KEY(a, b));
|
||
|
|
||
|
CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET NULL);
|
||
|
CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET DEFAULT);
|
||
|
CREATE TABLE c3(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE CASCADE);
|
||
|
CREATE TABLE c4(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT);
|
||
|
CREATE TABLE c5(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION);
|
||
|
|
||
|
CREATE TABLE c6(c, d,
|
||
|
FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
CREATE TABLE c7(c, d,
|
||
|
FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION
|
||
|
DEFERRABLE INITIALLY DEFERRED
|
||
|
);
|
||
|
|
||
|
CREATE TABLE log(msg);
|
||
|
CREATE TRIGGER tt AFTER DELETE ON p BEGIN
|
||
|
INSERT INTO log VALUES('delete ' || old.rowid);
|
||
|
END;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-57.2 {
|
||
|
execsql {
|
||
|
INSERT INTO p VALUES('a', 'b');
|
||
|
INSERT INTO c1 VALUES('a', 'b');
|
||
|
INSERT INTO c2 VALUES('a', 'b');
|
||
|
INSERT INTO c3 VALUES('a', 'b');
|
||
|
BEGIN;
|
||
|
DROP TABLE p;
|
||
|
SELECT * FROM c1;
|
||
|
}
|
||
|
} {{} {}}
|
||
|
do_test e_fkey-57.3 {
|
||
|
execsql { SELECT * FROM c2 }
|
||
|
} {{} {}}
|
||
|
do_test e_fkey-57.4 {
|
||
|
execsql { SELECT * FROM c3 }
|
||
|
} {}
|
||
|
do_test e_fkey-57.5 {
|
||
|
execsql { SELECT * FROM log }
|
||
|
} {}
|
||
|
do_test e_fkey-57.6 {
|
||
|
execsql ROLLBACK
|
||
|
} {}
|
||
|
do_test e_fkey-57.7 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
DELETE FROM p;
|
||
|
SELECT * FROM log;
|
||
|
ROLLBACK;
|
||
|
}
|
||
|
} {{delete 1}}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# If an IMMEDIATE foreign key fails as a result of a DROP TABLE, the
|
||
|
# DROP TABLE command fails.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-32768-47925 If an immediate foreign key constraint is
|
||
|
# violated, the DROP TABLE statement fails and the table is not dropped.
|
||
|
#
|
||
|
do_test e_fkey-58.1 {
|
||
|
execsql {
|
||
|
DELETE FROM c1;
|
||
|
DELETE FROM c2;
|
||
|
DELETE FROM c3;
|
||
|
}
|
||
|
execsql { INSERT INTO c5 VALUES('a', 'b') }
|
||
|
catchsql { DROP TABLE p }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-58.2 {
|
||
|
execsql { SELECT * FROM p }
|
||
|
} {a b}
|
||
|
do_test e_fkey-58.3 {
|
||
|
catchsql {
|
||
|
BEGIN;
|
||
|
DROP TABLE p;
|
||
|
}
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-58.4 {
|
||
|
execsql {
|
||
|
SELECT * FROM p;
|
||
|
SELECT * FROM c5;
|
||
|
ROLLBACK;
|
||
|
}
|
||
|
} {a b a b}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# If a DEFERRED foreign key fails as a result of a DROP TABLE, attempting
|
||
|
# to commit the transaction fails unless the violation is fixed.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-05903-08460 If a deferred foreign key constraint is
|
||
|
# violated, then an error is reported when the user attempts to commit
|
||
|
# the transaction if the foreign key constraint violations still exist
|
||
|
# at that point.
|
||
|
#
|
||
|
do_test e_fkey-59.1 {
|
||
|
execsql {
|
||
|
DELETE FROM c1 ; DELETE FROM c2 ; DELETE FROM c3 ;
|
||
|
DELETE FROM c4 ; DELETE FROM c5 ; DELETE FROM c6 ;
|
||
|
DELETE FROM c7
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-59.2 {
|
||
|
execsql { INSERT INTO c7 VALUES('a', 'b') }
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
DROP TABLE p;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-59.3 {
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-59.4 {
|
||
|
execsql { CREATE TABLE p(a, b, PRIMARY KEY(a, b)) }
|
||
|
catchsql COMMIT
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-59.5 {
|
||
|
execsql { INSERT INTO p VALUES('a', 'b') }
|
||
|
execsql COMMIT
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Any "foreign key mismatch" errors encountered while running an implicit
|
||
|
# "DELETE FROM tbl" are ignored.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-57242-37005 Any "foreign key mismatch" errors
|
||
|
# encountered as part of an implicit DELETE are ignored.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-60.1 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
|
||
|
CREATE TABLE p(a PRIMARY KEY, b REFERENCES nosuchtable);
|
||
|
CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES a);
|
||
|
CREATE TABLE c2(c REFERENCES p(b), d);
|
||
|
CREATE TABLE c3(c REFERENCES p ON DELETE SET NULL, d);
|
||
|
|
||
|
INSERT INTO p VALUES(1, 2);
|
||
|
INSERT INTO c1 VALUES(1, 2);
|
||
|
INSERT INTO c2 VALUES(1, 2);
|
||
|
INSERT INTO c3 VALUES(1, 2);
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-60.2 {
|
||
|
execsql { PRAGMA foreign_keys = ON }
|
||
|
catchsql { DELETE FROM p }
|
||
|
} {1 {no such table: main.nosuchtable}}
|
||
|
do_test e_fkey-60.3 {
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
DROP TABLE p;
|
||
|
SELECT * FROM c3;
|
||
|
ROLLBACK;
|
||
|
}
|
||
|
} {{} 2}
|
||
|
do_test e_fkey-60.4 {
|
||
|
execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) }
|
||
|
catchsql { DELETE FROM p }
|
||
|
} {1 {foreign key mismatch - "c2" referencing "p"}}
|
||
|
do_test e_fkey-60.5 {
|
||
|
execsql { DROP TABLE c1 }
|
||
|
catchsql { DELETE FROM p }
|
||
|
} {1 {foreign key mismatch - "c2" referencing "p"}}
|
||
|
do_test e_fkey-60.6 {
|
||
|
execsql { DROP TABLE c2 }
|
||
|
execsql { DELETE FROM p }
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that the special behaviors of ALTER and DROP TABLE are only
|
||
|
# activated when foreign keys are enabled. Special behaviors are:
|
||
|
#
|
||
|
# 1. ADD COLUMN not allowing a REFERENCES clause with a non-NULL
|
||
|
# default value.
|
||
|
# 2. Modifying foreign key definitions when a parent table is RENAMEd.
|
||
|
# 3. Running an implicit DELETE FROM command as part of DROP TABLE.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-54142-41346 The properties of the DROP TABLE and ALTER
|
||
|
# TABLE commands described above only apply if foreign keys are enabled.
|
||
|
#
|
||
|
do_test e_fkey-61.1.1 {
|
||
|
drop_all_tables
|
||
|
execsql { CREATE TABLE t1(a, b) }
|
||
|
catchsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 }
|
||
|
} {1 {Cannot add a REFERENCES column with non-NULL default value}}
|
||
|
do_test e_fkey-61.1.2 {
|
||
|
execsql { PRAGMA foreign_keys = OFF }
|
||
|
execsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 }
|
||
|
execsql { SELECT sql FROM sqlite_master WHERE name = 't1' }
|
||
|
} {{CREATE TABLE t1(a, b, c DEFAULT 'xxx' REFERENCES t2)}}
|
||
|
do_test e_fkey-61.1.3 {
|
||
|
execsql { PRAGMA foreign_keys = ON }
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-61.2.1 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE p(a UNIQUE);
|
||
|
CREATE TABLE c(b REFERENCES p(a));
|
||
|
BEGIN;
|
||
|
ALTER TABLE p RENAME TO parent;
|
||
|
SELECT sql FROM sqlite_master WHERE name = 'c';
|
||
|
ROLLBACK;
|
||
|
}
|
||
|
} {{CREATE TABLE c(b REFERENCES "parent"(a))}}
|
||
|
do_test e_fkey-61.2.2 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
ALTER TABLE p RENAME TO parent;
|
||
|
SELECT sql FROM sqlite_master WHERE name = 'c';
|
||
|
}
|
||
|
} {{CREATE TABLE c(b REFERENCES p(a))}}
|
||
|
do_test e_fkey-61.2.3 {
|
||
|
execsql { PRAGMA foreign_keys = ON }
|
||
|
} {}
|
||
|
|
||
|
do_test e_fkey-61.3.1 {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
CREATE TABLE p(a UNIQUE);
|
||
|
CREATE TABLE c(b REFERENCES p(a) ON DELETE SET NULL);
|
||
|
INSERT INTO p VALUES('x');
|
||
|
INSERT INTO c VALUES('x');
|
||
|
BEGIN;
|
||
|
DROP TABLE p;
|
||
|
SELECT * FROM c;
|
||
|
ROLLBACK;
|
||
|
}
|
||
|
} {{}}
|
||
|
do_test e_fkey-61.3.2 {
|
||
|
execsql {
|
||
|
PRAGMA foreign_keys = OFF;
|
||
|
DROP TABLE p;
|
||
|
SELECT * FROM c;
|
||
|
}
|
||
|
} {x}
|
||
|
do_test e_fkey-61.3.3 {
|
||
|
execsql { PRAGMA foreign_keys = ON }
|
||
|
} {}
|
||
|
|
||
|
###########################################################################
|
||
|
### SECTION 6: Limits and Unsupported Features
|
||
|
###########################################################################
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that MATCH clauses are parsed, but SQLite treats every foreign key
|
||
|
# constraint as if it were "MATCH SIMPLE".
|
||
|
#
|
||
|
# EVIDENCE-OF: R-24728-13230 SQLite parses MATCH clauses (i.e. does not
|
||
|
# report a syntax error if you specify one), but does not enforce them.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-24450-46174 All foreign key constraints in SQLite are
|
||
|
# handled as if MATCH SIMPLE were specified.
|
||
|
#
|
||
|
foreach zMatch [list SIMPLE PARTIAL FULL Simple parTIAL FuLL ] {
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-62.$zMatch.1 {
|
||
|
execsql "
|
||
|
CREATE TABLE p(a, b, c, PRIMARY KEY(b, c));
|
||
|
CREATE TABLE c(d, e, f, FOREIGN KEY(e, f) REFERENCES p MATCH $zMatch);
|
||
|
"
|
||
|
} {}
|
||
|
do_test e_fkey-62.$zMatch.2 {
|
||
|
execsql { INSERT INTO p VALUES(1, 2, 3) }
|
||
|
|
||
|
# MATCH SIMPLE behavior: Allow any child key that contains one or more
|
||
|
# NULL value to be inserted. Non-NULL values do not have to map to any
|
||
|
# parent key values, so long as at least one field of the child key is
|
||
|
# NULL.
|
||
|
execsql { INSERT INTO c VALUES('w', 2, 3) }
|
||
|
execsql { INSERT INTO c VALUES('x', 'x', NULL) }
|
||
|
execsql { INSERT INTO c VALUES('y', NULL, 'x') }
|
||
|
execsql { INSERT INTO c VALUES('z', NULL, NULL) }
|
||
|
|
||
|
# Check that the FK is enforced properly if there are no NULL values
|
||
|
# in the child key columns.
|
||
|
catchsql { INSERT INTO c VALUES('a', 2, 4) }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that SQLite does not support the SET CONSTRAINT statement. And
|
||
|
# that it is possible to create both immediate and deferred constraints.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-21599-16038 In SQLite, a foreign key constraint is
|
||
|
# permanently marked as deferred or immediate when it is created.
|
||
|
#
|
||
|
drop_all_tables
|
||
|
do_test e_fkey-62.1 {
|
||
|
catchsql { SET CONSTRAINTS ALL IMMEDIATE }
|
||
|
} {1 {near "SET": syntax error}}
|
||
|
do_test e_fkey-62.2 {
|
||
|
catchsql { SET CONSTRAINTS ALL DEFERRED }
|
||
|
} {1 {near "SET": syntax error}}
|
||
|
|
||
|
do_test e_fkey-62.3 {
|
||
|
execsql {
|
||
|
CREATE TABLE p(a, b, PRIMARY KEY(a, b));
|
||
|
CREATE TABLE cd(c, d,
|
||
|
FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY DEFERRED);
|
||
|
CREATE TABLE ci(c, d,
|
||
|
FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY IMMEDIATE);
|
||
|
BEGIN;
|
||
|
}
|
||
|
} {}
|
||
|
do_test e_fkey-62.4 {
|
||
|
catchsql { INSERT INTO ci VALUES('x', 'y') }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-62.5 {
|
||
|
catchsql { INSERT INTO cd VALUES('x', 'y') }
|
||
|
} {0 {}}
|
||
|
do_test e_fkey-62.6 {
|
||
|
catchsql { COMMIT }
|
||
|
} {1 {foreign key constraint failed}}
|
||
|
do_test e_fkey-62.7 {
|
||
|
execsql {
|
||
|
DELETE FROM cd;
|
||
|
COMMIT;
|
||
|
}
|
||
|
} {}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# Test that the maximum recursion depth of foreign key action programs is
|
||
|
# governed by the SQLITE_MAX_TRIGGER_DEPTH and SQLITE_LIMIT_TRIGGER_DEPTH
|
||
|
# settings.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-42264-30503 The SQLITE_MAX_TRIGGER_DEPTH and
|
||
|
# SQLITE_LIMIT_TRIGGER_DEPTH settings determine the maximum allowable
|
||
|
# depth of trigger program recursion. For the purposes of these limits,
|
||
|
# foreign key actions are considered trigger programs.
|
||
|
#
|
||
|
proc test_on_delete_recursion {limit} {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
CREATE TABLE t0(a PRIMARY KEY, b);
|
||
|
INSERT INTO t0 VALUES('x0', NULL);
|
||
|
}
|
||
|
for {set i 1} {$i <= $limit} {incr i} {
|
||
|
execsql "
|
||
|
CREATE TABLE t$i (
|
||
|
a PRIMARY KEY, b REFERENCES t[expr $i-1] ON DELETE CASCADE
|
||
|
);
|
||
|
INSERT INTO t$i VALUES('x$i', 'x[expr $i-1]');
|
||
|
"
|
||
|
}
|
||
|
execsql COMMIT
|
||
|
catchsql "
|
||
|
DELETE FROM t0;
|
||
|
SELECT count(*) FROM t$limit;
|
||
|
"
|
||
|
}
|
||
|
proc test_on_update_recursion {limit} {
|
||
|
drop_all_tables
|
||
|
execsql {
|
||
|
BEGIN;
|
||
|
CREATE TABLE t0(a PRIMARY KEY);
|
||
|
INSERT INTO t0 VALUES('xxx');
|
||
|
}
|
||
|
for {set i 1} {$i <= $limit} {incr i} {
|
||
|
set j [expr $i-1]
|
||
|
|
||
|
execsql "
|
||
|
CREATE TABLE t$i (a PRIMARY KEY REFERENCES t$j ON UPDATE CASCADE);
|
||
|
INSERT INTO t$i VALUES('xxx');
|
||
|
"
|
||
|
}
|
||
|
execsql COMMIT
|
||
|
catchsql "
|
||
|
UPDATE t0 SET a = 'yyy';
|
||
|
SELECT NOT (a='yyy') FROM t$limit;
|
||
|
"
|
||
|
}
|
||
|
|
||
|
do_test e_fkey-63.1.1 {
|
||
|
test_on_delete_recursion $SQLITE_MAX_TRIGGER_DEPTH
|
||
|
} {0 0}
|
||
|
do_test e_fkey-63.1.2 {
|
||
|
test_on_delete_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1]
|
||
|
} {1 {too many levels of trigger recursion}}
|
||
|
do_test e_fkey-63.1.3 {
|
||
|
sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5
|
||
|
test_on_delete_recursion 5
|
||
|
} {0 0}
|
||
|
do_test e_fkey-63.1.4 {
|
||
|
test_on_delete_recursion 6
|
||
|
} {1 {too many levels of trigger recursion}}
|
||
|
do_test e_fkey-63.1.5 {
|
||
|
sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000
|
||
|
} {5}
|
||
|
do_test e_fkey-63.2.1 {
|
||
|
test_on_update_recursion $SQLITE_MAX_TRIGGER_DEPTH
|
||
|
} {0 0}
|
||
|
do_test e_fkey-63.2.2 {
|
||
|
test_on_update_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1]
|
||
|
} {1 {too many levels of trigger recursion}}
|
||
|
do_test e_fkey-63.2.3 {
|
||
|
sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5
|
||
|
test_on_update_recursion 5
|
||
|
} {0 0}
|
||
|
do_test e_fkey-63.2.4 {
|
||
|
test_on_update_recursion 6
|
||
|
} {1 {too many levels of trigger recursion}}
|
||
|
do_test e_fkey-63.2.5 {
|
||
|
sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000
|
||
|
} {5}
|
||
|
|
||
|
#-------------------------------------------------------------------------
|
||
|
# The setting of the recursive_triggers pragma does not affect foreign
|
||
|
# key actions.
|
||
|
#
|
||
|
# EVIDENCE-OF: R-51769-32730 The PRAGMA recursive_triggers setting does
|
||
|
# not not affect the operation of foreign key actions.
|
||
|
#
|
||
|
foreach recursive_triggers_setting [list 0 1 ON OFF] {
|
||
|
drop_all_tables
|
||
|
execsql "PRAGMA recursive_triggers = $recursive_triggers_setting"
|
||
|
|
||
|
do_test e_fkey-64.$recursive_triggers_setting.1 {
|
||
|
execsql {
|
||
|
CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1 ON DELETE CASCADE);
|
||
|
INSERT INTO t1 VALUES(1, NULL);
|
||
|
INSERT INTO t1 VALUES(2, 1);
|
||
|
INSERT INTO t1 VALUES(3, 2);
|
||
|
INSERT INTO t1 VALUES(4, 3);
|
||
|
INSERT INTO t1 VALUES(5, 4);
|
||
|
SELECT count(*) FROM t1;
|
||
|
}
|
||
|
} {5}
|
||
|
do_test e_fkey-64.$recursive_triggers_setting.2 {
|
||
|
execsql { SELECT count(*) FROM t1 WHERE a = 1 }
|
||
|
} {1}
|
||
|
do_test e_fkey-64.$recursive_triggers_setting.3 {
|
||
|
execsql {
|
||
|
DELETE FROM t1 WHERE a = 1;
|
||
|
SELECT count(*) FROM t1;
|
||
|
}
|
||
|
} {0}
|
||
|
}
|
||
|
|
||
|
finish_test
|