4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 15:37:29 +08:00

812 lines
24 KiB
C
Raw Normal View History

2017-08-22 15:52:57 +08:00
/*!
\file gd32f4xx_spi.c
\brief SPI driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_spi.h"
#include "gd32f4xx_rcu.h"
#define SPI_INIT_MASK ((uint32_t)0x00003040U)
#define I2S_INIT_MASK ((uint32_t)0x0000F047U)
#define I2S_FULL_DUPLEX_MASK ((uint32_t)0x0000F040U)
/*!
\brief SPI and I2S reset
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5),include I2S1_ADD and I2S2_ADD
\param[out] none
\retval none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
switch(spi_periph){
case SPI0:
/* reset SPI0 and I2S0 */
rcu_periph_reset_enable(RCU_SPI0RST);
rcu_periph_reset_disable(RCU_SPI0RST);
break;
case SPI1:
/* reset SPI1,I2S1 and I2S1_ADD */
rcu_periph_reset_enable(RCU_SPI1RST);
rcu_periph_reset_disable(RCU_SPI1RST);
break;
case SPI2:
/* reset SPI2,I2S2 and I2S2_ADD */
rcu_periph_reset_enable(RCU_SPI2RST);
rcu_periph_reset_disable(RCU_SPI2RST);
break;
case SPI3:
/* reset SPI3 and I2S3 */
rcu_periph_reset_enable(RCU_SPI3RST);
rcu_periph_reset_disable(RCU_SPI3RST);
break;
case SPI4:
/* reset SPI4 and I2S4 */
rcu_periph_reset_enable(RCU_SPI4RST);
rcu_periph_reset_disable(RCU_SPI4RST);
break;
case SPI5:
/* reset SPI5 */
rcu_periph_reset_enable(RCU_SPI5RST);
rcu_periph_reset_disable(RCU_SPI5RST);
break;
default :
break;
}
}
/*!
\brief SPI parameter initialization
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_struct: SPI parameter initialization stuct
members of the structure and the member values are shown as below:
device_mode : SPI_MASTER, SPI_SLAVE.
trans_mode : SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
frame_size : SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
nss: : SPI_NSS_SOFT, SPI_NSS_HARD
endian : SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
clock_polarity_phase : SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
prescale : SPI_PSC_n (n=2,4,8,16,32,64,128,256)
\param[out] none
\retval none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{
uint32_t reg = 0U;
reg = SPI_CTL0(spi_periph);
reg &= SPI_INIT_MASK;
/* (1) select SPI as master or slave */
reg |= spi_struct->device_mode;
/* (2) select SPI transfer mode */
reg |= spi_struct->trans_mode;
/* (3) select SPI frame size */
reg |= spi_struct->frame_size;
/* (4) select SPI nss use hardware or software */
reg |= spi_struct->nss;
/* (5) select SPI LSB or MSB */
reg |= spi_struct->endian;
/* (6) select SPI polarity and phase */
reg |= spi_struct->clock_polarity_phase;
/* (7) select SPI prescale to adjust transmit speed */
reg |= spi_struct->prescale;
/* write to SPI_CTL0 register */
SPI_CTL0(spi_periph) = (uint32_t)reg;
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}
/*!
\brief SPI enable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_enable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}
/*!
\brief SPI disable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_disable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}
/*!
\brief I2S prescale config
\param[in] spi_periph: SPIx(x=0,1,2,3,4)
\param[in] audiosample:
\arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8khz
\arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11khz
\arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16khz
\arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22khz
\arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32khz
\arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44khz
\arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48khz
\arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96khz
\arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192khz
\param[in] frameformat:
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[in] mckout:
\arg I2S_MCKOUT_ENABLE: I2S master clock output enable
\arg I2S_MCKOUT_DISABLE: I2S master clock output disable
\param[out] none
\retval none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t i2s_audiosample, uint32_t i2s_frameformat, uint32_t i2s_mckout)
{
uint32_t temp_div = 2U, temp_of = 0U;
uint32_t temp = 0U;
uint32_t i2sclock = 0U;
#ifndef I2S_EXTERNAL_CLOCK_IN
uint32_t plli2sm = 0U, plli2sn = 0U, plli2sr = 0U;
#endif /* I2S_EXTERNAL_CLOCK_IN */
/* deinit SPI_I2SPSC register */
SPI_I2SPSC(spi_periph) = 0x0002U;
#ifdef I2S_EXTERNAL_CLOCK_IN
rcu_i2s_clock_config(RCU_I2SSRC_I2S_CKIN);
/* set the I2S clock to the external clock input value */
i2sclock = I2S_EXTERNAL_CLOCK_IN;
#else
/* turn on the oscillator HXTAL */
rcu_osci_on(RCU_HXTAL);
/* wait for oscillator stabilization flags is SET */
rcu_osci_stab_wait(RCU_HXTAL);
/* turn on the PLLI2S */
rcu_osci_on(RCU_PLLI2S_CK);
/* wait for PLLI2S flags is SET */
rcu_osci_stab_wait(RCU_PLLI2S_CK);
/* configure the I2S clock source selection */
rcu_i2s_clock_config(RCU_I2SSRC_PLLI2S);
/* get the RCU_PLL_PLLPSC value */
plli2sm = (uint32_t)(RCU_PLL & RCU_PLL_PLLPSC);
/* get the RCU_PLLI2S_PLLI2SN value */
plli2sn = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SN) >> 6);
/* get the RCU_PLLI2S_PLLI2SR value */
plli2sr = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SR) >> 28);
if((RCU_PLL & RCU_PLL_PLLSEL) == RCU_PLLSRC_HXTAL)
{
/* get the I2S source clock value */
i2sclock = (uint32_t)(((HXTAL_VALUE / plli2sm) * plli2sn) / plli2sr);
}
else
{ /* get the I2S source clock value */
i2sclock = (uint32_t)(((IRC16M_VALUE / plli2sm) * plli2sn) / plli2sr);
}
#endif /* I2S_EXTERNAL_CLOCK_IN */
/* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
if(I2S_MCKOUT_ENABLE == i2s_mckout){
temp = (uint32_t)(((i2sclock / 256U) * 10U) / i2s_audiosample);
}else{
if(I2S_FRAMEFORMAT_DT16B_CH16B == i2s_frameformat){
temp = (uint32_t)(((i2sclock / 32U) *10U ) / i2s_audiosample);
}else{
temp = (uint32_t)(((i2sclock / 64U) *10U ) / i2s_audiosample);
}
}
/* remove the floating point */
temp = (temp + 5U) / 10U;
temp_of = (temp & 0x00000001U);
temp_div = ((temp - temp_of) / 2U);
temp_of = (temp_of << 8);
/* set the default values */
if((temp_div< 2U) || (temp_div > 255U)){
temp_div = 2U;
temp_of = 0U;
}
/* configure SPI_I2SPSC */
SPI_I2SPSC(spi_periph) = (uint32_t)(temp_div | temp_of | i2s_mckout);
/* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN|SPI_I2SCTL_CHLEN));
/* configure data frame format */
SPI_I2SCTL(spi_periph) |= (uint32_t)i2s_frameformat;
}
/*!
\brief I2S parameter configuration
\param[in] spi_periph: SPIx(x=0,1,2,3,4)
\param[in] i2s_mode:
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
\arg I2S_MODE_SLAVERX : I2S slave receive mode
\arg I2S_MODE_MASTERTX : I2S master transmit mode
\arg I2S_MODE_MASTERRX : I2S master receive mode
\param[in] i2s_std:
\arg I2S_STD_PHILLIPS : I2S phillips standard
\arg I2S_STD_MSB : I2S MSB standard
\arg I2S_STD_LSB : I2S LSB standard
\arg I2S_STD_PCMSHORT : I2S PCM short standard
\arg I2S_STD_PCMLONG : I2S PCM long standard
\param[in] i2s_ckpl:
\arg I2S_CKPL_LOW : I2S clock polarity low level
\arg I2S_CKPL_HIGH : I2S clock polarity high level
\param[out] none
\retval none
*/
void i2s_init(uint32_t spi_periph, uint32_t i2s_mode, uint32_t i2s_standard, uint32_t i2s_ckpl)
{
uint32_t reg= 0U;
reg = SPI_I2SCTL(spi_periph);
reg &= I2S_INIT_MASK;
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)i2s_mode;
/* select I2S standard */
reg |= (uint32_t)i2s_standard;
/* select I2S polarity */
reg |= (uint32_t)i2s_ckpl;
/* write to SPI_I2SCTL register */
SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}
/*!
\brief I2S enable
\param[in] spi_periph: SPIx(x=0,1,2,3,4)
\param[out] none
\retval none
*/
void i2s_enable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}
/*!
\brief I2S disable
\param[in] spi_periph: SPIx(x=0,1,2,3,4)
\param[out] none
\retval none
*/
void i2s_disable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}
/*!
\brief SPI nss output enable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}
/*!
\brief SPI nss output disable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}
/*!
\brief SPI nss pin high level in software mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}
/*!
\brief SPI nss pin low level in software mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}
/*!
\brief SPI dma send or receive enable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_dma:
\arg SPI_DMA_TRANSMIT: enable DMA transmit
\arg SPI_DMA_RECEIVE: enable DMA receive
\param[out] none
\retval none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t spi_dma)
{
if(SPI_DMA_TRANSMIT == spi_dma){
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
}else{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
}
}
/*!
\brief SPI dma send or receive diable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_dma:
\arg SPI_DMA_TRANSMIT: disable DMA transmit
\arg SPI_DMA_RECEIVE: disable DMA receive
\param[out] none
\retval none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t spi_dma)
{
if(SPI_DMA_TRANSMIT == spi_dma){
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
}else{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
}
}
/*!
\brief configure SPI/I2S data frame format
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] frame_format:
\arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
\arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
\param[out] none
\retval none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
/* clear SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
/* confige SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}
/*!
\brief SPI transmit data
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] data: 16-bit data
\param[out] none
\retval none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
SPI_DATA(spi_periph) = (uint32_t)data;
}
/*!
\brief receive data
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval 16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
return ((uint16_t)SPI_DATA(spi_periph));
}
/*!
\brief configure SPI bidirectional transfer direction
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] transfer_direction:
\arg SPI_BIDIRECTIONAL_TEANSMIT: SPI work in transmit-only mode
\arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
\retval none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
if(SPI_BIDIRECTIONAL_TEANSMIT == transfer_direction){
/* set the transmit only mode */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TEANSMIT;
}else{
/* set the receive only mode */
SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
}
}
/*!
\brief SPI and I2S interrupt enable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int:
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
switch(spi_i2s_int){
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
break;
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
break;
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
break;
default:
break;
}
}
/*!
\brief SPI and I2S interrupt disable
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int:
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
switch(spi_i2s_int){
case SPI_I2S_INT_TBE :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
break;
case SPI_I2S_INT_RBNE :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
break;
case SPI_I2S_INT_ERR :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
break;
default :
break;
}
}
/*!
\brief get interrupt flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int:
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_RXORERR: overrun interrupt
\arg SPI_INT_CONFERR: config error interrupt
\arg SPI_INT_CRCERR: CRC error interrupt
\arg I2S_INT_TXURERR: underrun error interrupt
\arg SPI_I2S_INT_FERR: format error interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t spi_i2s_int)
{
uint32_t reg1 = SPI_STAT(spi_periph);
uint32_t reg2 = SPI_CTL1(spi_periph);
uint32_t temp1 = 0U;
uint32_t temp2 = 0U;
switch(spi_i2s_int){
case SPI_I2S_INT_TBE :
temp1 = reg1 & SPI_STAT_TBE;
temp2 = reg2 & SPI_CTL1_TBEIE;
break;
case SPI_I2S_INT_RBNE :
temp1 = reg1 & SPI_STAT_RBNE;
temp2 = reg2 & SPI_CTL1_RBNEIE;
break;
case SPI_I2S_INT_RXORERR :
temp1 = reg1 & SPI_STAT_RXORERR;
temp2 = reg2 & SPI_CTL1_ERRIE;
break;
case SPI_INT_CONFERR :
temp1 = reg1 & SPI_STAT_CONFERR;
temp2 = reg2 & SPI_CTL1_ERRIE;
break;
case SPI_INT_CRCERR :
temp1 = reg1 & SPI_STAT_CRCERR;
temp2 = reg2 & SPI_CTL1_ERRIE;
break;
case I2S_INT_TXURERR :
temp1 = reg1 & SPI_STAT_TXURERR;
temp2 = reg2 & SPI_CTL1_ERRIE;
break;
case SPI_I2S_INT_FERR :
temp1 = reg1 & SPI_STAT_FERR;
temp2 = reg2 & SPI_CTL1_ERRIE;
break;
default :
break;
}
if(temp1 && temp2){
return SET;
}else{
return RESET;
}
}
/*!
\brief get flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_flag:
\arg SPI_FLAG_TBE: transmit buffer empty flag
\arg SPI_FLAG_RBNE: receive buffer not empty flag
\arg SPI_FLAG_TRANS: transmit on-going flag
\arg SPI_FLAG_RXORERR: receive Overrun flag
\arg SPI_FLAG_CONFERR: mode config error flag
\arg SPI_FLAG_CRCERR: CRC error flag
\arg SPI_FLAG_FERR: format error interrupt flag
\arg I2S_FLAG_TBE: transmit buffer empty flag
\arg I2S_FLAG_RBNE: receive buffer not empty flag
\arg I2S_FLAG_TRANS: transmit on-going flag
\arg I2S_FLAG_RXORERR: overrun flag
\arg I2S_FLAG_TXURERR: underrun error flag
\arg I2S_FLAG_CH: channel side flag
\arg I2S_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t spi_i2s_flag)
{
if(SPI_STAT(spi_periph) & spi_i2s_flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear SPI CRC error flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}
/*!
\brief CRC function turn on
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_on(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}
/*!
\brief CRC function turn off
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_off(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}
/*!
\brief CRC polynomial set
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] crc_poly: CRC polynomial value
\param[out] none
\retval none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
/* enable SPI CRC */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
/* set SPI CRC polynomial */
SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}
/*!
\brief get SPI CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval 16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
return ((uint16_t)SPI_CRCPOLY(spi_periph));
}
/*!
\brief SPI next data is CRC value
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_next(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}
/*!
\brief get SPI CRC send value or receive value
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_crc:
\arg SPI_CRC_TX: get transmit crc value
\arg SPI_CRC_RX: get receive crc value
\param[out] none
\retval 16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t spi_crc)
{
if(SPI_CRC_TX == spi_crc){
return ((uint16_t)(SPI_TCRC(spi_periph)));
}else{
return ((uint16_t)(SPI_RCRC(spi_periph)));
}
}
/*!
\brief enable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}
/*!
\brief disable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}
/*!
\brief configure i2s full duplex mode
\param[in] i2s_add_periph: I2Sx_ADD(x=1,2)
\param[in] i2s_mode:
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
\arg I2S_MODE_SLAVERX : I2S slave receive mode
\arg I2S_MODE_MASTERTX : I2S master transmit mode
\arg I2S_MODE_MASTERRX : I2S master receive mode
\param[in] i2s_standard:
\arg I2S_STD_PHILLIPS : I2S phillips standard
\arg I2S_STD_MSB : I2S MSB standard
\arg I2S_STD_LSB : I2S LSB standard
\arg I2S_STD_PCMSHORT : I2S PCM short standard
\arg I2S_STD_PCMLONG : I2S PCM long standard
\param[in] i2s_ckpl:
\arg I2S_CKPL_LOW : I2S clock polarity low level
\arg I2S_CKPL_HIGH : I2S clock polarity high level
\param[in] i2s_frameformat:
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[out] none
\retval none
*/
void i2s_full_duplex_mode_config(uint32_t i2s_add_periph, uint32_t i2s_mode, uint32_t i2s_standard,
uint32_t i2s_ckpl, uint32_t i2s_frameformat)
{
uint32_t reg = 0U, tmp = 0U;
reg = I2S_ADD_I2SCTL(i2s_add_periph);
reg &= I2S_FULL_DUPLEX_MASK;
/* get the mode of the extra I2S module I2Sx_ADD */
if((I2S_MODE_MASTERTX == i2s_mode) || (I2S_MODE_SLAVETX == i2s_mode)){
tmp = I2S_MODE_SLAVERX;
}else{
tmp = I2S_MODE_SLAVETX;
}
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)tmp;
/* select I2S standard */
reg |= (uint32_t)i2s_standard;
/* select I2S polarity */
reg |= (uint32_t)i2s_ckpl;
/* configure data frame format */
reg |= (uint32_t)i2s_frameformat;
/* write to SPI_I2SCTL register */
I2S_ADD_I2SCTL(i2s_add_periph) = (uint32_t)reg;
}
/*!
\brief quad wire SPI enable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}
/*!
\brief quad wire SPI disable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}
/*!
\brief quad wire SPI write enable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_write_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}
/*!
\brief quad wire SPI read enable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_read_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}
/*!
\brief SPI_IO2 and SPI_IO3 pin output enable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_io23_output_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}
/*!
\brief SPI_IO2 and SPI_IO3 pin output disable
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_io23_output_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}