rt-thread-official/src/module.c

932 lines
23 KiB
C
Raw Normal View History

/*
* File : module.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-09 Bernard first version
* 2010-04-09 yi.qiu implement based on first version
* 2010-10-23 yi.qiu implement module memory allocator
*/
#include <rtthread.h>
#include <rtm.h>
#include "string.h"
#include "kservice.h"
/* #define RT_MODULE_DEBUG */
#ifdef RT_USING_MODULE
#include "module.h"
#define elf_module ((Elf32_Ehdr *)module_ptr)
#define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
#define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
#define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
#define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
#define IS_REL(s) (s.sh_type == SHT_REL)
#define IS_RELA(s) (s.sh_type == SHT_RELA)
#define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
#define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
#define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
/* module memory allocator */
struct rt_module_page
{
rt_uint8_t *ptr; /* address of memory block */
rt_size_t npage; /* number of pages */
rt_list_t list;
};
static struct rt_module_page *rt_module_page_list;
/* module memory allocator */
struct rt_mem_head
{
rt_size_t size; /* size of memory block */
struct rt_mem_head *next; /* next valid memory block */
};
static rt_module_t rt_current_module = RT_NULL;
rt_list_t rt_module_symbol_list;
struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL;
/**
* @ingroup SystemInit
*
* This function will init system module
*
*/
void rt_system_module_init(void)
{
extern int __rtmsymtab_start;
extern int __rtmsymtab_end;
#ifdef __GNUC__
_rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
_rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
#endif
rt_list_init(&rt_module_symbol_list);
/* init current module */
rt_current_module = RT_NULL;
}
static rt_uint32_t rt_module_symbol_find(const rt_uint8_t* sym_str)
{
/* find in kernel symbol table */
struct rt_module_symtab* index;
for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++)
{
if (rt_strcmp(index->name, (const char*)sym_str) == 0)
return index->addr;
}
return 0;
}
/**
* This function will return self module object
*
* @return the self module object
*
*/
rt_module_t rt_module_self (void)
{
/* return current module */
return rt_current_module;
}
/**
* This function will set current module object
*
* @return RT_EOK
*/
rt_err_t rt_module_set (rt_module_t module)
{
/* set current module */
rt_current_module = module;
return RT_EOK;
}
static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val)
{
Elf32_Addr *where, tmp;
Elf32_Sword addend;
where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset);
switch (ELF32_R_TYPE(rel->r_info))
{
case R_ARM_NONE:
break;
case R_ARM_ABS32:
*where += (Elf32_Addr)sym_val;
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where);
#endif
break;
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_CALL:
case R_ARM_JUMP24:
addend = *where & 0x00ffffff;
if (addend & 0x00800000)
addend |= 0xff000000;
tmp = sym_val - (Elf32_Addr)where + (addend << 2);
tmp >>= 2;
*where = (*where & 0xff000000) | (tmp & 0x00ffffff);
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where);
#endif
break;
case R_ARM_V4BX:
*where &= 0xf000000f;
*where |= 0x01a0f000;
break;
case R_ARM_GLOB_DAT:
case R_ARM_JUMP_SLOT:
*where = (Elf32_Addr)sym_val;
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val);
#endif
break;
default:
return -1;
}
return 0;
}
static void rt_module_init_object_container(struct rt_module* module)
{
RT_ASSERT(module != RT_NULL);
/* init object container - thread */
rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
#ifdef RT_USING_SEMAPHORE
/* init object container - semaphore */
rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
#endif
#ifdef RT_USING_MUTEX
/* init object container - mutex */
rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
#endif
#ifdef RT_USING_EVENT
/* init object container - event */
rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
#endif
#ifdef RT_USING_MAILBOX
/* init object container - mailbox */
rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* init object container - message queue */
rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
#endif
#ifdef RT_USING_MEMPOOL
/* init object container - memory pool */
rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
#endif
#ifdef RT_USING_DEVICE
/* init object container - device */
rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
#endif
/* init object container - timer */
rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
}
/**
* This function will load a module from memory and create a thread for it
*
* @param name the name of module, which shall be unique
* @param module_ptr the memory address of module image
*
* @return the module object
*
*/
rt_module_t rt_module_load(const rt_uint8_t* name, void* module_ptr)
{
rt_uint32_t index;
rt_uint32_t module_size = 0;
rt_module_t module = RT_NULL;
rt_uint8_t *ptr, *strtab;
rt_bool_t linked = RT_FALSE;
rt_kprintf("rt_module_load: %s\n", name);
/* check ELF header */
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0)
{
/* rtmlinke finished */
linked = RT_TRUE;
}
else if (rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0)
{
rt_kprintf(" module magic error\n");
return RT_NULL;
}
/* check ELF class */
if(elf_module->e_ident[EI_CLASS] != ELFCLASS32)
{
rt_kprintf(" module class error\n");
return RT_NULL;
}
/* get the ELF image size */
for (index = 0; index < elf_module->e_phnum; index++)
{
if(phdr[index].p_type == PT_LOAD)
module_size += phdr[index].p_memsz;
}
if (module_size == 0)
{
rt_kprintf(" module size error\n");
return module;
}
/* allocate module */
module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name);
if (!module) return RT_NULL;
/* allocate module space */
module->module_space = rt_malloc(module_size);
if (module->module_space == RT_NULL)
{
rt_object_delete(&(module->parent));
return RT_NULL;
}
/* zero all space */
ptr = module->module_space;
rt_memset(ptr, 0, module_size);
for (index = 0; index < elf_module->e_phnum; index++)
{
if(phdr[index].p_type == PT_LOAD)
{
rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz);
ptr += phdr[index].p_memsz;
}
}
/* set module entry */
module->module_entry = module->module_space + elf_module->e_entry;
/* handle relocation section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
if (IS_REL(shdr[index]))
{
rt_uint32_t i, nr_reloc;
Elf32_Sym *symtab;
Elf32_Rel *rel;
/* get relocate item */
rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
/* locate .rel.plt and .rel.dyn */
symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset);
strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel));
/* relocate every items */
for (i = 0; i < nr_reloc; i ++)
{
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
#ifdef RT_MODULE_DEBUG
rt_kprintf("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx);
#endif
if(sym->st_shndx != 0)
{
rt_module_arm_relocate(
module,
rel,
(Elf32_Addr)(module->module_space + sym->st_value));
}
else if(linked == RT_FALSE)
{
Elf32_Addr addr;
#ifdef RT_MODULE_DEBUG
rt_kprintf("unresolved relocate symbol: %s\n", strtab + sym->st_name);
#endif
/* need to resolve symbol in kernel symbol table */
addr = rt_module_symbol_find(strtab + sym->st_name);
if (addr == 0)
{
rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name);
rt_object_delete(&(module->parent));
rt_free(module);
return RT_NULL;
}
rt_module_arm_relocate(module, rel, addr);
}
rel ++;
}
}
}
/* construct module symbol table */
for (index = 0; index < elf_module->e_shnum; index ++)
{
rt_uint8_t* shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset;
if (rt_strcmp(shstrab + shdr[index].sh_name, ELF_RTMSYMTAB) == 0)
{
module->symtab = (struct rt_module_symtab *)(module->module_space + shdr[index].sh_addr);
module->nsym = shdr[index].sh_size / sizeof(struct rt_module_symtab);
}
}
/* init module object container */
rt_module_init_object_container(module);
/* increase module reference count */
module->nref++;
if(elf_module->e_entry != 0)
{
/* init module page list */
rt_list_init(&module->page_list);
/* init module memory allocator */
module->mem_list = RT_NULL;
/* create mpool for page node */
module->mpool = rt_mp_create(name, 1024, sizeof(struct rt_module_page));
/* create module thread */
module->stack_size = 2048;
module->thread_priority = 90;
module->module_thread = rt_thread_create(name,
module->module_entry, RT_NULL,
module->stack_size,
module->thread_priority, 10);
module->module_thread->module_id = (void*)module;
/* startup module thread */
rt_thread_startup(module->module_thread);
}
else
{
/* without entry point */
module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY;
}
return module;
}
#ifdef RT_USING_DFS
#include <dfs_posix.h>
/**
* This function will load a module from file
*
* @param name the name of module, which shall be unique
* @param filename the file name of application module image
*
* @return the module object
*
*/
rt_module_t rt_module_open(const char* filename)
{
int fd, length;
struct rt_module* module;
struct stat s;
char *buffer;
stat(filename, &s);
buffer = (char *)rt_malloc(s.st_size);
fd = open(filename, O_RDONLY, 0);
length = read(fd, buffer, s.st_size);
if (length <= 0)
{
rt_kprintf("check: read file failed\n");
close(fd);
rt_free(buffer);
return RT_NULL;
}
/* rt_kprintf("read %d bytes from file\n", length); */
module = rt_module_load(filename, (void *)buffer);
rt_free(buffer);
close(fd);
return module;
}
#if defined(RT_USING_FINSH)
#include <finsh.h>
FINSH_FUNCTION_EXPORT(rt_module_open, load module from file);
#endif
#endif
/**
* This function will unload a module from memory and release resources
*
* @param module the module to be unloaded
*
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
*
*/
rt_err_t rt_module_unload(rt_module_t module)
{
struct rt_object* object;
struct rt_list_node *list;
rt_kprintf("rt_module_unload: %s\n", module->parent.name);
/* check parameter */
RT_ASSERT(module != RT_NULL);
/* module has entry point */
if(!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
{
/* suspend module main thread */
if(module->module_thread != RT_NULL)
{
if (module->module_thread->stat == RT_THREAD_READY)
rt_thread_suspend(module->module_thread);
}
/* delete threads */
list = &module->module_object[RT_Object_Class_Thread].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_thread_detach((rt_thread_t)object);
}
else
{
/* delete dynamic object */
rt_thread_delete((rt_thread_t)object);
}
}
#ifdef RT_USING_SEMAPHORE
/* delete semaphores */
list = &module->module_object[RT_Object_Class_Thread].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_sem_detach((rt_sem_t)object);
}
else
{
/* delete dynamic object */
rt_sem_delete((rt_sem_t)object);
}
}
#endif
#ifdef RT_USING_MUTEX
/* delete mutexs*/
list = &module->module_object[RT_Object_Class_Mutex].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_mutex_detach((rt_mutex_t)object);
}
else
{
/* delete dynamic object */
rt_mutex_delete((rt_mutex_t)object);
}
}
#endif
#ifdef RT_USING_EVENT
/* delete mailboxs */
list = &module->module_object[RT_Object_Class_Event].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_event_detach((rt_event_t)object);
}
else
{
/* delete dynamic object */
rt_event_delete((rt_event_t)object);
}
}
#endif
#ifdef RT_USING_MAILBOX
/* delete mailboxs */
list = &module->module_object[RT_Object_Class_MailBox].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_mb_detach((rt_mailbox_t)object);
}
else
{
/* delete dynamic object */
rt_mb_delete((rt_mailbox_t)object);
}
}
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* delete msgqueues */
list = &module->module_object[RT_Object_Class_MessageQueue].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_mq_detach((rt_mq_t)object);
}
else
{
/* delete dynamic object */
rt_mq_delete((rt_mq_t)object);
}
}
#endif
#ifdef RT_USING_MEMPOOL
/* delete mempools */
list = &module->module_object[RT_Object_Class_MemPool].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_mp_detach((rt_mp_t)object);
}
else
{
/* delete dynamic object */
rt_mp_delete((rt_mp_t)object);
}
}
#endif
#ifdef RT_USING_DEVICE
/* delete devices */
list = &module->module_object[RT_Object_Class_Device].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
rt_device_unregister((rt_device_t)object);
}
#endif
/* delete timers */
list = &module->module_object[RT_Object_Class_Timer].object_list;
while(list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_timer_detach((rt_timer_t)object);
}
else
{
/* delete dynamic object */
rt_timer_delete((rt_timer_t)object);
}
}
/* free module pages */
list = &module->page_list;
while(list->next != list)
{
struct rt_module_page* page;
/* free page */
page = rt_list_entry(list->next, struct rt_module_page, list);
rt_page_free(page->ptr, page->npage);
rt_list_remove(list->next);
}
/* delete mpool */
if(module->mpool) rt_mp_delete(module->mpool);
}
/* release module space memory */
rt_free(module->module_space);
/* delete module object */
rt_object_delete((rt_object_t)module);
return RT_EOK;
}
/**
* This function will find the specified module.
*
* @param name the name of module finding
*
* @return the module
*/
rt_module_t rt_module_find(const char* name)
{
struct rt_object_information *information;
struct rt_object* object;
struct rt_list_node* node;
extern struct rt_object_information rt_object_container[];
/* enter critical */
rt_enter_critical();
/* try to find device object */
information = &rt_object_container[RT_Object_Class_Module];
for (node = information->object_list.next; node != &(information->object_list); node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
{
/* leave critical */
rt_exit_critical();
return (rt_module_t)object;
}
}
/* leave critical */
rt_exit_critical();
/* not found */
return RT_NULL;
}
static struct rt_mem_head *morepage(rt_size_t nu)
{
rt_uint8_t *cp;
rt_uint32_t npage;
struct rt_mem_head *up;
struct rt_module_page *node;
RT_ASSERT (nu != 0);
/* alloc pages from system heap */
npage = (nu * sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1)/RT_MM_PAGE_SIZE;
cp = rt_page_alloc(npage);
if(!cp) return RT_NULL;
/* allocate page list node from mpool */
node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
node->ptr = cp;
node->npage = npage;
/* insert page list node to moudle's page list */
rt_list_insert_after (&rt_current_module->page_list, &node->list);
up = (struct rt_mem_head *) cp;
up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
rt_module_free(rt_current_module, (void *)(up+1));
return up;
}
/*
rt_module_malloc - alloc memory block in free list
*/
void *rt_module_malloc(rt_size_t size)
{
struct rt_mem_head *b, *n;
struct rt_mem_head **prev;
rt_size_t nunits;
nunits = (size + sizeof(struct rt_mem_head) -1)/sizeof(struct rt_mem_head) + 1;
RT_ASSERT(size != 0);
RT_ASSERT(nunits != 0);
prev = (struct rt_mem_head **)&rt_current_module->mem_list;
/* if size can be devided by page, alloc page directly */
if(size % RT_MM_PAGE_SIZE == 0)
{
rt_uint8_t *cp;
struct rt_module_page *node;
rt_uint32_t npage = size / RT_MM_PAGE_SIZE;
/* alloc pages from system heap */
cp = rt_page_alloc(npage);
if(!cp) return RT_NULL;
/* allocate page list node from mpool */
node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
node->ptr = cp;
node->npage = npage;
/* insert page list node to moudle's page list */
rt_list_insert_after (&rt_current_module->page_list, &node->list);
}
while(RT_TRUE)
{
b = *prev;
if(!b)
{
if ((b = morepage(nunits)) == RT_NULL) return RT_NULL;
else return rt_module_malloc(size); /* To be improved */
}
if (b->size > nunits)
{
/* splite memory */
n = b + nunits;
n->next = b->next;
n->size = b->size - nunits;
b->size = nunits;
*prev = n;
break;
}
if (b->size == nunits)
{
/* this node fit, remove this node */
*prev = b->next;
break;
}
prev = &(b->next);
}
return (void *)(b + 1);
}
/*
rt_module_free - insert memory block in free list
*/
void rt_module_free(rt_module_t module, void *addr)
{
struct rt_mem_head *b, *n;
struct rt_mem_head **prev;
RT_ASSERT(addr);
RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) -1)) == 0);
n = (struct rt_mem_head *)addr - 1;
prev = (struct rt_mem_head **)&module->mem_list;
while ((b = *prev) != RT_NULL)
{
RT_ASSERT(b->size > 0);
RT_ASSERT(b > n || b + b->size <= n);
if (b + b->size == n)
{
if (b + (b->size += n->size) == b->next)
{
b->size += b->next->size;
b->next = b->next->next;
}
return;
}
if (b == n + n->size)
{
n->size = b->size + n->size;
n->next = b->next;
*prev = n;
return;
}
if (b > n + n->size) break;
prev = &(b->next);
}
n->next = b;
*prev = n;
/* free page, TODO */
}
/*
rt_module_realloc - realloc memory block in free list
*/
void *rt_module_realloc(void *ptr, rt_size_t size)
{
struct rt_mem_head *b, *p, *prev, *tmpp;
rt_size_t nunits;
if (!ptr) return rt_module_malloc(size);
if (size == 0)
{
rt_module_free(rt_current_module, ptr);
return RT_NULL;
}
nunits = (size + sizeof(struct rt_mem_head) - 1) / sizeof(struct rt_mem_head) + 1;
b = (struct rt_mem_head *)ptr - 1;
if (nunits <= b->size)
{
/* new size is smaller or equal then before */
if (nunits == b->size) return ptr;
else
{
p = b + nunits;
p->size = b->size - nunits;
b->size = nunits;
rt_module_free(rt_current_module, (void *)(p + 1));
return (void *)(b + 1);
}
}
else
{
/* more space then required */
prev = (struct rt_mem_head *)rt_current_module->mem_list;
for (p = prev->next; p != (b->size + b) && p != RT_NULL; prev = p, p = p->next) break;
/* available block after ap in freelist */
if (p != RT_NULL && (p->size >= (nunits - (b->size))) && p == (b + b->size))
{
/* perfect match */
if (p->size == (nunits - (b->size)))
{
b->size = nunits;
prev->next = p->next;
}
else /* more space then required, split block*/
{
/* pointer to old header */
tmpp = p;
p = b + nunits;
/* restoring old pointer */
p->next = tmpp->next;
/* new size for p */
p->size = tmpp->size + b->size - nunits;
b->size = nunits;
prev->next = p;
}
rt_current_module->mem_list = (void *)prev;
return (void *) (b + 1);
}
else /* allocate new memory and copy old data */
{
if ((p = rt_module_malloc(size)) == RT_NULL) return RT_NULL;
rt_memmove(p, (b+1), ((b->size) * sizeof(struct rt_mem_head)));
rt_module_free(rt_current_module, (void *)(b + 1));
return (void *) (p);
}
}
}
#endif