4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-21 10:53:31 +08:00

549 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Email: opensource_embedded@phytium.com.cn
*
* Change Logs:
* Date Author Notes
* 2023-03-20 zhangyan first version
*
*/
#include "rtconfig.h"
#ifdef RT_USING_QSPI
#include <rtthread.h>
2023-08-05 14:45:11 +08:00
#ifdef RT_USING_SMART
#include <ioremap.h>
#endif
#include "rtdevice.h"
#include "drv_qspi.h"
#include "fqspi_flash.h"
#include "rtdbg.h"
#include "fiopad.h"
2023-08-05 14:45:11 +08:00
#include "fqspi_hw.h"
#define DAT_LENGTH 128
2023-08-05 14:45:11 +08:00
#define QSPI_ALIGNED_BYTE 4
static rt_uint8_t rd_buf[DAT_LENGTH];
static rt_uint8_t wr_buf[DAT_LENGTH];
static phytium_qspi_bus phytium_qspi =
{
.fqspi_id = FQSPI0_ID,
};
static struct rt_qspi_device *qspi_device; /* phytium device bus handle */
static char qspi_bus_name[RT_NAME_MAX] = "QSPIBUS";
static char qspi_dev_name[RT_NAME_MAX] = "QSPIDEV";
extern FIOPadCtrl iopad_ctrl;
rt_err_t FQspiInit(phytium_qspi_bus *phytium_qspi_bus)
{
FError ret = FT_SUCCESS;
rt_uint32_t qspi_id = phytium_qspi_bus->fqspi_id;
#ifdef USING_QSPI_CHANNEL0
2023-08-05 14:45:11 +08:00
#if defined CONFIG_TARGET_E2000D
FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR51_REG0_OFFSET, FIOPAD_FUNC0);
2023-08-05 14:45:11 +08:00
#elif defined CONFIG_TARGET_E2000Q
FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR55_REG0_OFFSET, FIOPAD_FUNC0);
2023-08-05 14:45:11 +08:00
#endif
#elif defined USING_QSPI_CHANNEL1
#if defined CONFIG_TARGET_E2000D
FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR45_REG0_OFFSET, FIOPAD_FUNC0);
#elif defined CONFIG_TARGET_E2000Q
FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR49_REG0_OFFSET, FIOPAD_FUNC0);
2023-08-05 14:45:11 +08:00
#endif
#endif
FQspiDeInitialize(&(phytium_qspi_bus->fqspi));
FQspiConfig pconfig = *FQspiLookupConfig(qspi_id);
#ifdef RT_USING_SMART
pconfig.base_addr = (uintptr)rt_ioremap((void *)pconfig.base_addr, 0x1000);
#endif
/* Norflash init, include reset and read flash_size */
ret = FQspiCfgInitialize(&(phytium_qspi_bus->fqspi), &pconfig);
if (FT_SUCCESS != ret)
{
LOG_E("Qspi init failed.\n");
return RT_ERROR;
}
else
{
rt_kprintf("Qspi init successfully.\n");
}
/* Detect connected flash infomation */
ret = FQspiFlashDetect(&(phytium_qspi_bus->fqspi));
if (FT_SUCCESS != ret)
{
LOG_E("Qspi flash detect failed.\n");
return RT_ERROR;
}
else
{
rt_kprintf("Qspi flash detect successfully.\n");
}
return RT_EOK;
}
static rt_err_t phytium_qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
phytium_qspi_bus *qspi_bus;
2023-08-05 14:45:11 +08:00
qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data;
rt_err_t ret = RT_EOK;
ret = FQspiInit(qspi_bus);
if (RT_EOK != ret)
{
qspi_bus->init = RT_FALSE;
rt_kprintf("Qspi init failed!!!\n");
return RT_ERROR;
}
qspi_bus->init = RT_EOK;
return RT_EOK;
}
2023-08-05 14:45:11 +08:00
static FError QspiFlashWriteData(FQspiCtrl *pctrl, u8 command, uintptr addr, const u8 *buf, size_t len)
{
RT_ASSERT(pctrl && buf);
FError ret = FQSPI_SUCCESS;
u32 loop = 0;
const u32 mask = (u32)GENMASK(1, 0);
u32 reg_val = 0;
u32 val = 0;
u32 aligned_bit = 0;
u8 tmp[QSPI_ALIGNED_BYTE] = {0xff, 0xff, 0xff, 0xff};
uintptr base_addr = pctrl->config.base_addr;
if (FT_COMPONENT_IS_READY != pctrl->is_ready)
{
LOG_E("Nor flash not ready !!!");
return FQSPI_NOT_READY;
}
/* Flash write enable */
FQspiFlashEnableWrite(pctrl);
memset(&pctrl->wr_cfg, 0, sizeof(pctrl->wr_cfg));
/* set cmd region, command */
pctrl->wr_cfg.wr_cmd = command;
pctrl->wr_cfg.wr_wait = FQSPI_WAIT_ENABLE;
/* clear addr select bit */
pctrl->wr_cfg.wr_addr_sel = 0;
/* set wr mode, use buffer */
pctrl->wr_cfg.wr_mode = FQSPI_USE_BUFFER_ENABLE;
/* set sck_sel region, clk_div */
pctrl->wr_cfg.wr_sck_sel = FQSPI_SCK_DIV_128;
/* set addr_sel region, FQSPI_ADDR_SEL_3 or FQSPI_ADDR_SEL_4 */
switch (command)
{
case FQSPI_FLASH_CMD_PP:
case FQSPI_FLASH_CMD_QPP:
pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_3;
break;
case FQSPI_FLASH_CMD_4PP:
case FQSPI_FLASH_CMD_4QPP:
pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_4;
break;
default:
ret |= FQSPI_NOT_SUPPORT;
return ret;
break;
}
/*write wr_cfg to Write config register 0x08 */
FQspiWrCfgConfig(pctrl);
if (IS_ALIGNED(addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */
{
/* write alligned data into memory space */
for (loop = 0; loop < (len >> 2); loop++)
{
FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop));
}
/* write not alligned data into memory space */
if (len & mask)
{
addr = addr + (len & ~mask);
memcpy(tmp, buf + (len & ~mask), len & mask);
FQSPI_DAT_WRITE(addr, *(u32 *)(tmp));
}
}
else
{
aligned_bit = (addr & mask);
addr = addr - aligned_bit;
reg_val = FQSPI_READ_REG32(addr, 0);
for (loop = 0; loop < (QSPI_ALIGNED_BYTE - aligned_bit); loop++)
{
val = (val << 8) | (buf[loop]);
reg_val &= (~(0xff << (loop * 8)));
}
reg_val |= val;
reg_val = __builtin_bswap32(reg_val);
FQSPI_DAT_WRITE(addr, reg_val);
buf = buf + loop;
len = len - loop;
addr = addr + QSPI_ALIGNED_BYTE;
LOG_E("addr=%p, buf=%p, len=%d, value=%#x\r\n", addr, buf, len, *(u32 *)(buf));
for (loop = 0; loop < (len >> 2); loop++)
{
FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop));
}
if (!IS_ALIGNED(len, QSPI_ALIGNED_BYTE))
{
buf = buf + QSPI_ALIGNED_BYTE * loop;
len = len - QSPI_ALIGNED_BYTE * loop;
addr = addr + QSPI_ALIGNED_BYTE * loop;
memcpy(tmp, buf, len);
FQSPI_DAT_WRITE(addr, *(u32 *)(tmp));
}
}
/* flush buffer data to Flash */
FQspiWriteFlush(base_addr);
ret = FQspiFlashWaitForCmd(pctrl);
return ret;
}
size_t QspiFlashReadData(FQspiCtrl *pctrl, uintptr addr, u8 *buf, size_t len)
{
/* addr of copy dst or src might be zero */
RT_ASSERT(pctrl && buf);
size_t loop = 0;
const size_t cnt = len / QSPI_ALIGNED_BYTE; /* cnt number of 4-bytes need copy */
const size_t remain = len % QSPI_ALIGNED_BYTE; /* remain number of 1-byte not aligned */
u8 align_buf[QSPI_ALIGNED_BYTE];
size_t copy_len = 0;
intptr src_addr = (intptr)addr; /* conver to 32/64 bit addr */
intptr dst_addr = (intptr)buf;
if (FT_COMPONENT_IS_READY != pctrl->is_ready)
{
LOG_E("Nor flash not ready !!!");
return 0;
}
if (0 == pctrl->rd_cfg.rd_cmd)
{
LOG_E("Nor flash read command is not ready !!!");
return 0;
}
if (0 == len)
{
return 0;
}
if (IS_ALIGNED(src_addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */
{
/* read 4-bytes aligned buf part */
for (loop = 0; loop < cnt; loop++)
{
*(u32 *)dst_addr = *(volatile u32 *)(src_addr);
src_addr += QSPI_ALIGNED_BYTE;
dst_addr += QSPI_ALIGNED_BYTE;
}
copy_len += (loop << 2);
if (remain > 0)
{
*(u32 *)align_buf = *(volatile u32 *)(src_addr);
}
/* read remain un-aligned buf byte by byte */
for (loop = 0; loop < remain; loop++)
{
*(u8 *)dst_addr = align_buf[loop];
dst_addr += 1;
}
copy_len += loop;
}
else /* if copy src is not aligned */
{
/* read byte by byte */
for (loop = 0; loop < len; loop++)
{
*(u8 *)dst_addr = *(volatile u8 *)(src_addr);
dst_addr += 1;
src_addr += 1;
}
copy_len += loop;
}
return copy_len;
}
static rt_ssize_t phytium_qspi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(message != RT_NULL);
phytium_qspi_bus *qspi_bus;
struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
rt_uint32_t cmd = qspi_message->instruction.content;
rt_uint32_t flash_addr = qspi_message->address.content;
2023-08-05 14:45:11 +08:00
const void *rcvb = message->recv_buf;
const void *sndb = message->send_buf;
FError ret = FT_SUCCESS;
2023-08-05 14:45:11 +08:00
qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data;
#ifdef USING_QSPI_CHANNEL0
qspi_bus->fqspi.config.channel = 0;
2023-08-05 14:45:11 +08:00
#elif defined USING_QSPI_CHANNEL1
qspi_bus->fqspi.config.channel = 1;
#endif
2023-08-05 14:45:11 +08:00
uintptr addr = qspi_bus->fqspi.config.mem_start + qspi_bus->fqspi.config.channel * qspi_bus->fqspi.flash_size + flash_addr;
#ifdef RT_USING_SMART
addr = (uintptr)rt_ioremap((void *)addr, 0x2000);
#endif
/*Distinguish the write mode according to different commands*/
if (cmd == FQSPI_FLASH_CMD_PP || cmd == FQSPI_FLASH_CMD_QPP || cmd == FQSPI_FLASH_CMD_4PP || cmd == FQSPI_FLASH_CMD_4QPP)
{
rt_uint8_t len = message->length;
2023-08-05 14:45:11 +08:00
rt_memcpy(&wr_buf, (char *)message->send_buf, len);
ret = FQspiFlashErase(&(qspi_bus->fqspi), FQSPI_FLASH_CMD_SE, flash_addr);
if (FT_SUCCESS != ret)
{
LOG_E("Failed to erase mem, test result 0x%x.\r\n", ret);
return RT_ERROR;
}
/* write norflash data */
2023-08-05 14:45:11 +08:00
ret = QspiFlashWriteData(&(qspi_bus->fqspi), cmd, addr, (u8 *)&wr_buf, len);
if (FT_SUCCESS != ret)
{
LOG_E("Failed to write mem, test result 0x%x.\r\n", ret);
return RT_ERROR;
}
else
{
rt_kprintf("Write successfully!!!\r\n");
}
return RT_EOK;
}
/*Distinguish the read mode according to different commands*/
if (cmd == FQSPI_FLASH_CMD_READ || cmd == FQSPI_FLASH_CMD_4READ || cmd == FQSPI_FLASH_CMD_FAST_READ || cmd == FQSPI_FLASH_CMD_4FAST_READ ||
cmd == FQSPI_FLASH_CMD_DUAL_READ || cmd == FQSPI_FLASH_CMD_QIOR || cmd == FQSPI_FLASH_CMD_4QIOR)
{
ret |= FQspiFlashReadDataConfig(&(qspi_bus->fqspi), cmd);
if (FT_SUCCESS != ret)
{
rt_kprintf("Failed to config read, test result 0x%x.\r\n", ret);
return RT_ERROR;
}
/* read norflash data */
2023-08-05 14:45:11 +08:00
size_t read_len = QspiFlashReadData(&(qspi_bus->fqspi), addr, (u8 *)&rd_buf, DAT_LENGTH);
message->length = read_len;
if (read_len != DAT_LENGTH)
{
rt_kprintf("Failed to read mem, read len = %d.\r\n", read_len);
return RT_ERROR;
}
else
{
rt_kprintf("Read successfully!!!\r\n");
2023-08-05 14:45:11 +08:00
message->recv_buf = &rd_buf;
}
FtDumpHexByte(message->recv_buf, read_len);
return RT_EOK;
}
if (rcvb)
{
if (cmd == FQSPI_FLASH_CMD_RDID || cmd == FQSPI_FLASH_CMD_RDSR1 || cmd == FQSPI_FLASH_CMD_RDSR2 || cmd == FQSPI_FLASH_CMD_RDSR3)
{
2023-08-05 14:45:11 +08:00
ret |= FQspiFlashSpecialInstruction(&(qspi_bus->fqspi), cmd, (u8 *)rcvb, sizeof(rcvb));
if (FT_SUCCESS != ret)
{
LOG_E("Failed to read flash information.\n");
return RT_ERROR;
}
}
return RT_EOK;
}
if (sndb)
{
ret |= FQspiFlashEnableWrite(&(qspi_bus->fqspi));
if (FT_SUCCESS != ret)
{
LOG_E("Failed to enable flash reg write.\n");
return RT_ERROR;
}
2023-08-05 14:45:11 +08:00
ret |= FQspiFlashWriteReg(&(qspi_bus->fqspi), cmd, (u8 *)sndb, 1);
if (FT_SUCCESS != ret)
{
LOG_E("Failed to write flash reg.\n");
return RT_ERROR;
}
return RT_EOK;
}
2023-08-05 14:45:11 +08:00
rt_kprintf("cmd not found!!!\r\n");
return ret;
}
static struct rt_spi_ops phytium_qspi_ops =
{
.configure = phytium_qspi_configure,
.xfer = phytium_qspi_xfer,
};
rt_err_t phytium_qspi_bus_attach_device(const char *bus_name, const char *device_name)
{
struct rt_qspi_device *qspi_device;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("Qspi bus attach device failed.");
result = RT_ENOMEM;
goto __exit;
}
result = rt_spi_bus_attach_device(&(qspi_device->parent), device_name, bus_name, RT_NULL);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
}
2023-08-05 14:45:11 +08:00
return result;
}
int rt_hw_qspi_init(void)
{
int result = RT_EOK;
phytium_qspi.qspi_bus.parent.user_data = &phytium_qspi;
if (rt_qspi_bus_register(&phytium_qspi.qspi_bus, qspi_bus_name, &phytium_qspi_ops) == RT_EOK)
{
rt_kprintf("Qspi bus register successfully!!!\n");
}
else
{
LOG_E("Qspi bus register Failed!!!\n");
result = -RT_ERROR;
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_qspi_init);
/*example*/
struct rt_spi_message write_message;
struct rt_spi_message read_message;
rt_err_t qspi_init()
{
rt_err_t res = RT_EOK;
res = phytium_qspi_bus_attach_device(qspi_bus_name, qspi_dev_name);
RT_ASSERT(res == RT_EOK);
qspi_device = (struct rt_qspi_device *)rt_device_find(qspi_dev_name);
return res;
}
/*read cmd example message improvement*/
void ReadCmd(struct rt_spi_message *spi_message)
{
struct rt_qspi_message *message = (struct rt_qspi_message *) spi_message;
message->address.content = 0x360000 ;/*Flash address*/
message->instruction.content = 0x03 ;/*read cmd*/
rt_qspi_transfer_message(qspi_device, message);
}
/*write cmd example message improvement*/
void WriteCmd(struct rt_spi_message *spi_message)
{
struct rt_qspi_message *message = (struct rt_qspi_message *) spi_message;
message->address.content = 0x360000 ;/*Flash address*/
message->instruction.content = 0x02 ;/*write cmd*/
rt_qspi_transfer_message(qspi_device, message);
}
/*write cmd example message improvement*/
void qspi_thread(void *parameter)
{
rt_err_t res;
qspi_init();
/*Read and write flash chip fixed area repeatedly*/
write_message.send_buf = "phytium";
write_message.length = strlen((char *)write_message.send_buf) + 1;
WriteCmd(&write_message);
ReadCmd(&read_message);
write_message.send_buf = "phytium hello world!";
write_message.length = strlen((char *)write_message.send_buf) + 1;
WriteCmd(&write_message);
ReadCmd(&read_message);
write_message.send_buf = "Welcome to phytium chip";
write_message.length = strlen((char *)write_message.send_buf) + 1;
WriteCmd(&write_message);
ReadCmd(&read_message);
rt_uint8_t recv;
rt_uint8_t cmd = 0x9F;/*read the flash status reg2*/
res = rt_qspi_send_then_recv(qspi_device, &cmd, sizeof(cmd), &recv, sizeof(recv));
RT_ASSERT(res != RT_EOK);
rt_kprintf("The status reg = %x \n", recv);
}
rt_err_t qspi_sample(int argc, char *argv[])
{
rt_thread_t thread;
rt_err_t res;
2023-08-05 14:45:11 +08:00
thread = rt_thread_create("qspi_thread", qspi_thread, RT_NULL, 4096, 25, 10);
res = rt_thread_startup(thread);
RT_ASSERT(res == RT_EOK);
return res;
}
/* Enter qspi_sample command for testing */
MSH_CMD_EXPORT(qspi_sample, qspi sample);
#endif