rt-thread-official/bsp/nuvoton/libraries/nuc980/Driver/Source/nu_crypto.c

2674 lines
82 KiB
C
Raw Normal View History

/**************************************************************************//**
* @file crypto.c
* @version V1.10
* @brief Cryptographic Accelerator driver source file
*
* SPDX-License-Identifier: Apache-2.0
* @copyright (C) 2018 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <stdio.h>
#include <string.h>
#include "nuc980.h"
#include "nu_crypto.h"
/** @cond HIDDEN_SYMBOLS */
#define ENABLE_DEBUG 0
#if ENABLE_DEBUG
#define CRPT_DBGMSG printf
#else
#define CRPT_DBGMSG(...) do { } while (0) /* disable debug */
#endif
/** @endcond HIDDEN_SYMBOLS */
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup CRYPTO_Driver CRYPTO Driver
@{
*/
/** @addtogroup CRYPTO_EXPORTED_FUNCTIONS CRYPTO Exported Functions
@{
*/
/** @cond HIDDEN_SYMBOLS */
static uint32_t g_AES_CTL;
static char hex_char_tbl[] = "0123456789abcdef";
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count);
static char get_Nth_nibble_char(uint32_t val32, uint32_t idx);
static void Hex2Reg(char input[], uint32_t volatile reg[]);
static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[]);
static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift);
static char ch2hex(char ch);
static int get_nibble_value(char c);
/** @endcond HIDDEN_SYMBOLS */
/**
* @brief Open PRNG function
* @param[in] crpt Reference to Crypto module.
* @param[in] u32KeySize is PRNG key size, including:
* - \ref PRNG_KEY_SIZE_64
* - \ref PRNG_KEY_SIZE_128
* - \ref PRNG_KEY_SIZE_192
* - \ref PRNG_KEY_SIZE_256
* @param[in] u32SeedReload is PRNG seed reload or not, including:
* - \ref PRNG_SEED_CONT
* - \ref PRNG_SEED_RELOAD
* @param[in] u32Seed The new seed. Only valid when u32SeedReload is PRNG_SEED_RELOAD.
* @return None
*/
void PRNG_Open(CRPT_T *crpt, uint32_t u32KeySize, uint32_t u32SeedReload, uint32_t u32Seed)
{
if (u32SeedReload)
{
crpt->PRNG_SEED = u32Seed;
}
crpt->PRNG_CTL = (u32KeySize << CRPT_PRNG_CTL_KEYSZ_Pos) |
(u32SeedReload << CRPT_PRNG_CTL_SEEDRLD_Pos);
}
/**
* @brief Start to generate one PRNG key.
* @param[in] crpt Reference to Crypto module.
* @return None
*/
void PRNG_Start(CRPT_T *crpt)
{
crpt->PRNG_CTL |= CRPT_PRNG_CTL_START_Msk;
}
/**
* @brief Read the PRNG key.
* @param[in] crpt Reference to Crypto module.
* @param[out] u32RandKey The key buffer to store newly generated PRNG key.
* @return None
*/
void PRNG_Read(CRPT_T *crpt, uint32_t u32RandKey[])
{
uint32_t i, wcnt;
wcnt = (((crpt->PRNG_CTL & CRPT_PRNG_CTL_KEYSZ_Msk) >> CRPT_PRNG_CTL_KEYSZ_Pos) + 1U) * 2U;
for (i = 0U; i < wcnt; i++)
{
u32RandKey[i] = crpt->PRNG_KEY[i];
}
crpt->PRNG_CTL &= ~CRPT_PRNG_CTL_SEEDRLD_Msk;
}
/**
* @brief Open AES encrypt/decrypt function.
* @param[in] crpt Reference to Crypto module.
* @param[in] u32EncDec 1: AES encode; 0: AES decode
* @param[in] u32OpMode AES operation mode, including:
* - \ref AES_MODE_ECB
* - \ref AES_MODE_CBC
* - \ref AES_MODE_CFB
* - \ref AES_MODE_OFB
* - \ref AES_MODE_CTR
* - \ref AES_MODE_CBC_CS1
* - \ref AES_MODE_CBC_CS2
* - \ref AES_MODE_CBC_CS3
* @param[in] u32KeySize is AES key size, including:
* - \ref AES_KEY_SIZE_128
* - \ref AES_KEY_SIZE_192
* - \ref AES_KEY_SIZE_256
* @param[in] u32SwapType is AES input/output data swap control, including:
* - \ref AES_NO_SWAP
* - \ref AES_OUT_SWAP
* - \ref AES_IN_SWAP
* - \ref AES_IN_OUT_SWAP
* @return None
*/
void AES_Open(CRPT_T *crpt, uint32_t u32EncDec,
uint32_t u32OpMode, uint32_t u32KeySize, uint32_t u32SwapType)
{
crpt->AES_CTL = (u32EncDec << CRPT_AES_CTL_ENCRPT_Pos) |
(u32OpMode << CRPT_AES_CTL_OPMODE_Pos) |
(u32KeySize << CRPT_AES_CTL_KEYSZ_Pos) |
(u32SwapType << CRPT_AES_CTL_OUTSWAP_Pos);
g_AES_CTL = crpt->AES_CTL;
}
/**
* @brief Start AES encrypt/decrypt
* @param[in] crpt Reference to Crypto module.
* @param[in] u32DMAMode AES DMA control, including:
* - \ref CRYPTO_DMA_ONE_SHOT One shop AES encrypt/decrypt.
* - \ref CRYPTO_DMA_CONTINUE Continuous AES encrypt/decrypt.
* - \ref CRYPTO_DMA_LAST Last AES encrypt/decrypt of a series of AES_Start.
* @return None
*/
void AES_Start(CRPT_T *crpt, uint32_t u32DMAMode)
{
crpt->AES_CTL = g_AES_CTL;
crpt->AES_CTL |= CRPT_AES_CTL_START_Msk | (u32DMAMode << CRPT_AES_CTL_DMALAST_Pos);
}
/**
* @brief Set AES keys
* @param[in] crpt Reference to Crypto module.
* @param[in] au32Keys An word array contains AES keys.
* @param[in] u32KeySize is AES key size, including:
* - \ref AES_KEY_SIZE_128
* - \ref AES_KEY_SIZE_192
* - \ref AES_KEY_SIZE_256
* @return None
*/
void AES_SetKey(CRPT_T *crpt, uint32_t au32Keys[], uint32_t u32KeySize)
{
uint32_t i, wcnt, key_reg_addr;
key_reg_addr = (uint32_t)&crpt->AES0_KEY[0];
wcnt = 4UL + u32KeySize * 2UL;
for (i = 0U; i < wcnt; i++)
{
outpw(key_reg_addr, au32Keys[i]);
key_reg_addr += 4UL;
}
}
/**
* @brief Set AES initial vectors
* @param[in] crpt Reference to Crypto module.
* @param[in] au32IV A four entry word array contains AES initial vectors.
* @return None
*/
void AES_SetInitVect(CRPT_T *crpt, uint32_t au32IV[])
{
uint32_t i, key_reg_addr;
key_reg_addr = (uint32_t)&crpt->AES0_IV[0];
for (i = 0U; i < 4U; i++)
{
outpw(key_reg_addr, au32IV[i]);
key_reg_addr += 4UL;
}
}
/**
* @brief Set AES DMA transfer configuration.
* @param[in] crpt Reference to Crypto module.
* @param[in] u32SrcAddr AES DMA source address
* @param[in] u32DstAddr AES DMA destination address
* @param[in] u32TransCnt AES DMA transfer byte count
* @return None
*/
void AES_SetDMATransfer(CRPT_T *crpt, uint32_t u32SrcAddr,
uint32_t u32DstAddr, uint32_t u32TransCnt)
{
uint32_t reg_addr;
reg_addr = (uint32_t)&crpt->AES0_SADDR;
outpw(reg_addr, u32SrcAddr);
reg_addr = (uint32_t)&crpt->AES0_DADDR;
outpw(reg_addr, u32DstAddr);
reg_addr = (uint32_t)&crpt->AES0_CNT;
outpw(reg_addr, u32TransCnt);
}
/**
* @brief Open SHA encrypt function.
* @param[in] crpt Reference to Crypto module.
* @param[in] u32OpMode SHA operation mode, including:
* - \ref SHA_MODE_SHA1
* - \ref SHA_MODE_SHA224
* - \ref SHA_MODE_SHA256
* - \ref SHA_MODE_SHA384
* - \ref SHA_MODE_SHA512
* @param[in] u32SwapType is SHA input/output data swap control, including:
* - \ref SHA_NO_SWAP
* - \ref SHA_OUT_SWAP
* - \ref SHA_IN_SWAP
* - \ref SHA_IN_OUT_SWAP
* @param[in] hmac_key_len HMAC key byte count
* @return None
*/
void SHA_Open(CRPT_T *crpt, uint32_t u32OpMode, uint32_t u32SwapType, uint32_t hmac_key_len)
{
crpt->HMAC_CTL = (u32OpMode << CRPT_HMAC_CTL_OPMODE_Pos) |
(u32SwapType << CRPT_HMAC_CTL_OUTSWAP_Pos);
if (hmac_key_len != 0UL)
{
crpt->HMAC_KEYCNT = hmac_key_len;
crpt->HMAC_CTL |= CRPT_HMAC_CTL_HMACEN_Msk;
}
}
/**
* @brief Start SHA encrypt
* @param[in] crpt Reference to Crypto module.
* @param[in] u32DMAMode TDES DMA control, including:
* - \ref CRYPTO_DMA_ONE_SHOT One shop SHA encrypt.
* - \ref CRYPTO_DMA_CONTINUE Continuous SHA encrypt.
* - \ref CRYPTO_DMA_LAST Last SHA encrypt of a series of SHA_Start.
* @return None
*/
void SHA_Start(CRPT_T *crpt, uint32_t u32DMAMode)
{
crpt->HMAC_CTL &= ~(0x7UL << CRPT_HMAC_CTL_DMALAST_Pos);
crpt->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk | (u32DMAMode << CRPT_HMAC_CTL_DMALAST_Pos);
}
/**
* @brief Set SHA DMA transfer
* @param[in] crpt Reference to Crypto module.
* @param[in] u32SrcAddr SHA DMA source address
* @param[in] u32TransCnt SHA DMA transfer byte count
* @return None
*/
void SHA_SetDMATransfer(CRPT_T *crpt, uint32_t u32SrcAddr, uint32_t u32TransCnt)
{
crpt->HMAC_SADDR = u32SrcAddr;
crpt->HMAC_DMACNT = u32TransCnt;
}
/**
* @brief Read the SHA digest.
* @param[in] crpt Reference to Crypto module.
* @param[out] u32Digest The SHA encrypt output digest.
* @return None
*/
void SHA_Read(CRPT_T *crpt, uint32_t u32Digest[])
{
uint32_t i, wcnt, reg_addr;
i = (crpt->HMAC_CTL & CRPT_HMAC_CTL_OPMODE_Msk) >> CRPT_HMAC_CTL_OPMODE_Pos;
if (i == SHA_MODE_SHA1)
{
wcnt = 5UL;
}
else if (i == SHA_MODE_SHA224)
{
wcnt = 7UL;
}
else if (i == SHA_MODE_SHA256)
{
wcnt = 8UL;
}
else if (i == SHA_MODE_SHA384)
{
wcnt = 12UL;
}
else
{
/* SHA_MODE_SHA512 */
wcnt = 16UL;
}
reg_addr = (uint32_t) & (crpt->HMAC_DGST[0]);
for (i = 0UL; i < wcnt; i++)
{
u32Digest[i] = inpw(reg_addr);
reg_addr += 4UL;
}
}
/** @cond HIDDEN_SYMBOLS */
/*-----------------------------------------------------------------------------------------------*/
/* */
/* ECC */
/* */
/*-----------------------------------------------------------------------------------------------*/
#define ECCOP_POINT_MUL (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_MODULE (0x1UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_POINT_ADD (0x2UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_POINT_DOUBLE (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
#define MODOP_DIV (0x0UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_MUL (0x1UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_ADD (0x2UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_SUB (0x3UL << CRPT_ECC_CTL_MODOP_Pos)
enum
{
CURVE_GF_P,
CURVE_GF_2M,
};
/*-----------------------------------------------------*/
/* Define elliptic curve (EC): */
/*-----------------------------------------------------*/
typedef struct e_curve_t
{
E_ECC_CURVE curve_id;
int32_t Echar;
char Ea[144];
char Eb[144];
char Px[144];
char Py[144];
int32_t Epl;
char Pp[176];
int32_t Eol;
char Eorder[176];
int32_t key_len;
int32_t irreducible_k1;
int32_t irreducible_k2;
int32_t irreducible_k3;
int32_t GF;
} ECC_CURVE;
const ECC_CURVE _Curve[] =
{
{
/* NIST: Curve P-192 : y^2=x^3-ax+b (mod p) */
CURVE_P_192,
48, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC", /* "000000000000000000000000000000000000000000000003" */
"64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
"188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
"07192b95ffc8da78631011ed6b24cdd573f977a11e794811",
58, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", /* "6277101735386680763835789423207666416083908700390324961279" */
58, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* "6277101735386680763835789423176059013767194773182842284081" */
192, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* NIST: Curve P-224 : y^2=x^3-ax+b (mod p) */
CURVE_P_224,
56, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE", /* "00000000000000000000000000000000000000000000000000000003" */
"b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
"b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
"bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34",
70, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "0026959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", /* "0026959946667150639794667015087019625940457807714424391721682722368061" */
224, /* key_len */
9,
8,
3,
CURVE_GF_P
},
{
/* NIST: Curve P-256 : y^2=x^3-ax+b (mod p) */
CURVE_P_256,
64, /* Echar */
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", /* "0000000000000000000000000000000000000000000000000000000000000003" */
"5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
"6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
"4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",
78, /* Epl */
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", /* "115792089210356248762697446949407573530086143415290314195533631308867097853951" */
78, /* Eol */
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", /* "115792089210356248762697446949407573529996955224135760342422259061068512044369" */
256, /* key_len */
10,
5,
2,
CURVE_GF_P
},
{
/* NIST: Curve P-384 : y^2=x^3-ax+b (mod p) */
CURVE_P_384,
96, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC", /* "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
"b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
"aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
"3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f",
116, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF", /* "39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319" */
116, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973", /* "39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643" */
384, /* key_len */
12,
3,
2,
CURVE_GF_P
},
{
/* NIST: Curve P-521 : y^2=x^3-ax+b (mod p)*/
CURVE_P_521,
131, /* Echar */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", /* "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
"051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
"0c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
"11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650",
157, /* Epl */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151" */
157, /* Eol */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449" */
521, /* key_len */
32,
32,
32,
CURVE_GF_P
},
{
/* NIST: Curve B-163 : y^2+xy=x^3+ax^2+b */
CURVE_B_163,
41, /* Echar */
"00000000000000000000000000000000000000001",
"20a601907b8c953ca1481eb10512f78744a3205fd",
"3f0eba16286a2d57ea0991168d4994637e8343e36",
"0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
49, /* Eol */
"40000000000000000000292FE77E70C12A4234C33", /* "5846006549323611672814742442876390689256843201587" */
163, /* key_len */
7,
6,
3,
CURVE_GF_2M
},
{
/* NIST: Curve B-233 : y^2+xy=x^3+ax^2+b */
CURVE_B_233,
59, /* Echar 59 */
"00000000000000000000000000000000000000000000000000000000001",
"066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad",
"0fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b",
"1006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"1000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", /* "6901746346790563787434755862277025555839812737345013555379383634485463" */
233, /* key_len */
74,
74,
74,
CURVE_GF_2M
},
{
/* NIST: Curve B-283 : y^2+xy=x^3+ax^2+b */
CURVE_B_283,
71, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000001",
"27b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a581485af6263e313b79a2f5",
"5f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd86b12053",
"3676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45be8112f4",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
85, /* Eol */
"3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", /* "7770675568902916283677847627294075626569625924376904889109196526770044277787378692871" */
283, /* key_len */
12,
7,
5,
CURVE_GF_2M
},
{
/* NIST: Curve B-409 : y^2+xy=x^3+ax^2+b */
CURVE_B_409,
103, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"021a5c2c8ee9feb5c4b9a753b7b476b7fd6422ef1f3dd674761fa99d6ac27c8a9a197b272822f6cd57a55aa4f50ae317b13545f",
"15d4860d088ddb3496b0c6064756260441cde4af1771d4db01ffe5b34e59703dc255a868a1180515603aeab60794e54bb7996a7",
"061b1cfab6be5f32bbfa78324ed106a7636b9c5a7bd198d0158aa4f5488d08f38514f1fdf4b4f40d2181b3681c364ba0273c706",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
123, /* Eol */
"10000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", /* "661055968790248598951915308032771039828404682964281219284648798304157774827374805208143723762179110965979867288366567526771" */
409, /* key_len */
87,
87,
87,
CURVE_GF_2M
},
{
/* NIST: Curve B-571 : y^2+xy=x^3+ax^2+b */
CURVE_B_571,
143, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"2f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a",
"303001d34b856296c16c0d40d3cd7750a93d1d2955fa80aa5f40fc8db7b2abdbde53950f4c0d293cdd711a35b67fb1499ae60038614f1394abfa3b4c850d927e1e7769c8eec2d19",
"37bf27342da639b6dccfffeb73d69d78c6c27a6009cbbca1980f8533921e8a684423e43bab08a576291af8f461bb2a8b3531d2f0485c19b16e2f1516e23dd3c1a4827af1b8ac15b",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
172, /* Eol */
"3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", /* "3864537523017258344695351890931987344298927329706434998657235251451519142289560424536143999389415773083133881121926944486246872462816813070234528288303332411393191105285703" */
571, /* key_len */
10,
5,
2,
CURVE_GF_2M
},
{
/* NIST: Curve K-163 : y^2+xy=x^3+ax^2+b */
CURVE_K_163,
41, /* Echar */
"00000000000000000000000000000000000000001",
"00000000000000000000000000000000000000001",
"2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8",
"289070fb05d38ff58321f2e800536d538ccdaa3d9",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
49, /* Eol */
"4000000000000000000020108A2E0CC0D99F8A5EF", /* "5846006549323611672814741753598448348329118574063" */
163, /* key_len */
7,
6,
3,
CURVE_GF_2M
},
{
/* NIST: Curve K-233 : y^2+xy=x^3+ax^2+b */
CURVE_K_233,
59, /* Echar 59 */
"00000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000001",
"17232ba853a7e731af129f22ff4149563a419c26bf50a4c9d6eefad6126",
"1db537dece819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", /* "3450873173395281893717377931138512760570940988862252126328087024741343" */
233, /* key_len */
74,
74,
74,
CURVE_GF_2M
},
{
/* NIST: Curve K-283 : y^2+xy=x^3+ax^2+b */
CURVE_K_283,
71, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000001",
"503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836",
"1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
85, /* Eol */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", /* "3885337784451458141838923813647037813284811733793061324295874997529815829704422603873" */
283, /* key_len */
12,
7,
5,
CURVE_GF_2M
},
{
/* NIST: Curve K-409 : y^2+xy=x^3+ax^2+b */
CURVE_K_409,
103, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"060f05f658f49c1ad3ab1890f7184210efd0987e307c84c27accfb8f9f67cc2c460189eb5aaaa62ee222eb1b35540cfe9023746",
"1e369050b7c4e42acba1dacbf04299c3460782f918ea427e6325165e9ea10e3da5f6c42e9c55215aa9ca27a5863ec48d8e0286b",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
123, /* Eol */
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", /* "330527984395124299475957654016385519914202341482140609642324395022880711289249191050673258457777458014096366590617731358671" */
409, /* key_len */
87,
87,
87,
CURVE_GF_2M
},
{
/* NIST: Curve K-571 : y^2+xy=x^3+ax^2+b */
CURVE_K_571,
143, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972",
"349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
172, /* Eol */
"20000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", /* "1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673" */
571, /* key_len */
10,
5,
2,
CURVE_GF_2M
},
{
/* Koblitz: Curve secp192k1 : y2 = x3+ax+b over Fp */
CURVE_KO_192,
48, /* Echar */
"00000000000000000000000000000000000000000",
"00000000000000000000000000000000000000003",
"DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
"9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
58, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", /* p */
58, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", /* n */
192, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Koblitz: Curve secp224k1 : y2 = x3+ax+b over Fp */
CURVE_KO_224,
56, /* Echar */
"00000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000005",
"A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
"7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
70, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", /* p */
70, /* Eol */
"0000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", /* n */
224, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Koblitz: Curve secp256k1 : y2 = x3+ax+b over Fp */
CURVE_KO_256,
64, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000007",
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
78, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", /* p */
78, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", /* n */
256, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP256r1 */
CURVE_BP_256,
64, /* Echar */
"7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9", /* A */
"26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6", /* B */
"8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", /* x */
"547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", /* y */
78, /* Epl */
"A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", /* p */
78, /* Eol */
"A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", /* q */
256, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP384r1 */
CURVE_BP_384,
96, /* Echar */
"7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826", /* A */
"04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11", /* B */
"1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E", /* x */
"8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315", /* y */
116, /* Epl */
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53", /* p */
116, /* Eol */
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", /* q */
384, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP512r1 */
CURVE_BP_512,
128, /* Echar */
"7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA", /* A */
"3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723", /* B */
"81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822", /* x */
"7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892", /* y */
156, /* Epl */
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3", /* p */
156, /* Eol */
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", /* q */
512, /* key_len */
7,
2,
1,
CURVE_GF_P
},
};
static ECC_CURVE *pCurve;
static ECC_CURVE Curve_Copy;
static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve);
static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve);
static void run_ecc_codec(CRPT_T *crpt, uint32_t mode);
static char temp_hex_str[160];
#if ENABLE_DEBUG
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
{
int32_t i;
printf("%s => ", str);
for (i = 0; i < count; i++)
{
printf("0x%08x ", regs[i]);
}
printf("\n");
}
#else
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
{
}
#endif
static char ch2hex(char ch)
{
if (ch <= '9')
{
ch = ch - '0';
}
else if ((ch <= 'z') && (ch >= 'a'))
{
ch = ch - 'a' + 10U;
}
else
{
ch = ch - 'A' + 10U;
}
return ch;
}
static void Hex2Reg(char input[], uint32_t volatile reg[])
{
char hex;
int si, ri;
uint32_t i, val32;
si = (int)strlen(input) - 1;
ri = 0;
while (si >= 0)
{
val32 = 0UL;
for (i = 0UL; (i < 8UL) && (si >= 0); i++)
{
hex = ch2hex(input[si]);
val32 |= (uint32_t)hex << (i * 4UL);
si--;
}
reg[ri++] = val32;
}
}
static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift)
{
uint32_t hex, carry;
int si, ri;
uint32_t i, val32;
si = (int)strlen(input) - 1;
ri = 0L;
carry = 0UL;
while (si >= 0)
{
val32 = 0UL;
for (i = 0UL; (i < 8UL) && (si >= 0L); i++)
{
hex = (uint32_t)ch2hex(input[si]);
hex <<= shift;
val32 |= (uint32_t)((hex & 0xFUL) | carry) << (i * 4UL);
carry = (hex >> 4UL) & 0xFUL;
si--;
}
reg[ri++] = val32;
}
if (carry != 0UL)
{
reg[ri] = carry;
}
}
/**
* @brief Extract specified nibble from an unsigned word in character format.
* For example:
* Suppose val32 is 0x786543210, get_Nth_nibble_char(val32, 3) will return a '3'.
* @param[in] val32 The input unsigned word
* @param[in] idx The Nth nibble to be extracted.
* @return The nibble in character format.
*/
static char get_Nth_nibble_char(uint32_t val32, uint32_t idx)
{
return hex_char_tbl[(val32 >> (idx * 4U)) & 0xfU ];
}
static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[])
{
int32_t idx, ri;
uint32_t i;
output[count] = 0U;
idx = count - 1;
for (ri = 0; idx >= 0; ri++)
{
for (i = 0UL; (i < 8UL) && (idx >= 0); i++)
{
output[idx] = get_Nth_nibble_char(reg[ri], i);
idx--;
}
}
}
static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve)
{
uint32_t i;
ECC_CURVE *ret = NULL;
for (i = 0UL; i < sizeof(_Curve) / sizeof(ECC_CURVE); i++)
{
if (ecc_curve == _Curve[i].curve_id)
{
memcpy((char *)&Curve_Copy, &_Curve[i], sizeof(ECC_CURVE));
ret = &Curve_Copy; /* (ECC_CURVE *)&_Curve[i]; */
}
if (ret != NULL)
{
break;
}
}
return ret;
}
static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve)
{
int32_t i, ret = 0;
pCurve = get_curve(ecc_curve);
if (pCurve == NULL)
{
CRPT_DBGMSG("Cannot find curve %d!!\n", ecc_curve);
ret = -1;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_A[i] = 0UL;
crpt->ECC_B[i] = 0UL;
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Ea, crpt->ECC_A);
Hex2Reg(pCurve->Eb, crpt->ECC_B);
Hex2Reg(pCurve->Px, crpt->ECC_X1);
Hex2Reg(pCurve->Py, crpt->ECC_Y1);
CRPT_DBGMSG("Key length = %d\n", pCurve->key_len);
dump_ecc_reg("CRPT_ECC_CURVE_A", crpt->ECC_A, 10);
dump_ecc_reg("CRPT_ECC_CURVE_B", crpt->ECC_B, 10);
dump_ecc_reg("CRPT_ECC_POINT_X1", crpt->ECC_X1, 10);
dump_ecc_reg("CRPT_ECC_POINT_Y1", crpt->ECC_Y1, 10);
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_N[0] = 0x1UL;
crpt->ECC_N[(pCurve->key_len) / 32] |= (1UL << ((pCurve->key_len) % 32));
crpt->ECC_N[(pCurve->irreducible_k1) / 32] |= (1UL << ((pCurve->irreducible_k1) % 32));
crpt->ECC_N[(pCurve->irreducible_k2) / 32] |= (1UL << ((pCurve->irreducible_k2) % 32));
crpt->ECC_N[(pCurve->irreducible_k3) / 32] |= (1UL << ((pCurve->irreducible_k3) % 32));
}
else
{
Hex2Reg(pCurve->Pp, crpt->ECC_N);
}
}
dump_ecc_reg("CRPT_ECC_CURVE_N", crpt->ECC_N, 10);
return ret;
}
static int get_nibble_value(char c)
{
if ((c >= '0') && (c <= '9'))
{
c = c - '0';
}
if ((c >= 'a') && (c <= 'f'))
{
c = c - 'a' + (char)10;
}
if ((c >= 'A') && (c <= 'F'))
{
c = c - 'A' + (char)10;
}
return (int)c;
}
static int ecc_strcmp(char *s1, char *s2)
{
char c1, c2;
while (*s1 == '0') s1++;
while (*s2 == '0') s2++;
for (; *s1 || *s2; s1++, s2++)
{
if ((*s1 >= 'A') && (*s1 <= 'Z'))
c1 = *s1 + 32;
else
c1 = *s1;
if ((*s2 >= 'A') && (*s2 <= 'Z'))
c2 = *s2 + 32;
else
c2 = *s2;
if (c1 != c2)
return 1;
}
return 0;
}
volatile uint32_t g_ECC_done, g_ECCERR_done;
/** @endcond HIDDEN_SYMBOLS */
/**
* @brief ECC interrupt service routine. User application must invoke this function in
* his CRYPTO_IRQHandler() to let Crypto driver know ECC processing was done.
* @param[in] crpt Reference to Crypto module.
* @return none
*/
void ECC_Complete(CRPT_T *crpt)
{
if (crpt->INTSTS & CRPT_INTSTS_ECCIF_Msk)
{
g_ECC_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCIF_Msk;
/* printf("ECC done IRQ.\n"); */
}
if (crpt->INTSTS & CRPT_INTSTS_ECCEIF_Msk)
{
g_ECCERR_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCEIF_Msk;
/* printf("ECCERRIF is set!!\n"); */
}
}
/**
* @brief Check if the private key is located in valid range of curve.
* @param[in] crpt Reference to Crypto module.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] private_k The input private key.
* @return 1 Is valid.
* @return 0 Is not valid.
* @return -1 Invalid curve.
*/
int ECC_IsPrivateKeyValid(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char private_k[])
{
uint32_t i;
int ret = -1;
pCurve = get_curve(ecc_curve);
if (pCurve == NULL)
{
ret = -1;
}
if (strlen(private_k) < strlen(pCurve->Eorder))
{
ret = 1;
}
if (strlen(private_k) > strlen(pCurve->Eorder))
{
ret = 0;
}
for (i = 0UL; i < strlen(private_k); i++)
{
if (get_nibble_value(private_k[i]) < get_nibble_value(pCurve->Eorder[i]))
{
ret = 1;
break;
}
if (get_nibble_value(private_k[i]) > get_nibble_value(pCurve->Eorder[i]))
{
ret = 0;
break;
}
}
return ret;
}
/**
* @brief Given a private key and curve to generate the public key pair.
* @param[in] crpt Reference to Crypto module.
* @param[in] private_k The input private key.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[out] public_k1 The output public key 1.
* @param[out] public_k2 The output public key 2.
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_GeneratePublicKey(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[])
{
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(private_k, crpt->ECC_K);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
while ((g_ECC_done | g_ECCERR_done) == 0UL)
{
}
Reg2Hex(pCurve->Echar, crpt->ECC_X1, public_k1);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, public_k2);
}
return ret;
}
/**
* @brief Given a private key and curve to generate the public key pair.
* @param[in] crpt Reference to Crypto module.
* @param[out] x1 The x-coordinate of input point.
* @param[out] y1 The y-coordinate of input point.
* @param[in] k The private key
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[out] x2 The x-coordinate of output point.
* @param[out] y2 The y-coordinate of output point.
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_Mutiply(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char x1[], char y1[], char *k, char x2[], char y2[])
{
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(x1, crpt->ECC_X1);
Hex2Reg(y1, crpt->ECC_Y1);
Hex2Reg(k, crpt->ECC_K);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
while ((g_ECC_done | g_ECCERR_done) == 0UL)
{
}
Reg2Hex(pCurve->Echar, crpt->ECC_X1, x2);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, y2);
}
return ret;
}
/**
* @brief Given a curve parameter, the other party's public key, and one's own private key to generate the secret Z.
* @param[in] crpt Reference to Crypto module.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] private_k One's own private key.
* @param[in] public_k1 The other party's publick key 1.
* @param[in] public_k2 The other party's publick key 2.
* @param[out] secret_z The ECC CDH secret Z.
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSecretZ(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[], char secret_z[])
{
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
if ((ecc_curve == CURVE_B_163) || (ecc_curve == CURVE_B_233) || (ecc_curve == CURVE_B_283) ||
(ecc_curve == CURVE_B_409) || (ecc_curve == CURVE_B_571) || (ecc_curve == CURVE_K_163))
{
Hex2RegEx(private_k, crpt->ECC_K, 1);
}
else if ((ecc_curve == CURVE_K_233) || (ecc_curve == CURVE_K_283) ||
(ecc_curve == CURVE_K_409) || (ecc_curve == CURVE_K_571))
{
Hex2RegEx(private_k, crpt->ECC_K, 2);
}
else
{
Hex2Reg(private_k, crpt->ECC_K);
}
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
while ((g_ECC_done | g_ECCERR_done) == 0UL)
{
}
Reg2Hex(pCurve->Echar, crpt->ECC_X1, secret_z);
}
return ret;
}
/** @cond HIDDEN_SYMBOLS */
static void run_ecc_codec(CRPT_T *crpt, uint32_t mode)
{
if ((mode & CRPT_ECC_CTL_ECCOP_Msk) == ECCOP_MODULE)
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
else
{
if (pCurve->GF == (int)CURVE_GF_2M)
{
/* point */
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) | mode | CRPT_ECC_CTL_START_Msk;
while ((g_ECC_done | g_ECCERR_done) == 0UL)
{
}
while (crpt->ECC_STS & CRPT_ECC_STS_BUSY_Msk)
{
}
}
/** @endcond HIDDEN_SYMBOLS */
/**
* @brief ECDSA digital signature generation.
* @param[in] crpt Reference to Crypto module.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] d The private key.
* @param[in] k The selected random integer.
* @param[out] R R of the (R,S) pair digital signature
* @param[out] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
char *d, char *k, char *R, char *S)
{
uint32_t volatile temp_result1[18], temp_result2[18];
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
/*
* 1. Calculate e = HASH(m), where HASH is a cryptographic hashing algorithm, (i.e. SHA-1)
* (1) Use SHA to calculate e
*/
/* 2. Select a random integer k form [1, n-1]
* (1) Notice that n is order, not prime modulus or irreducible polynomial function
*/
/*
* 3. Compute r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2
* (1) Write the curve parameter A, B, and curve length M to corresponding registers
* (2) Write the prime modulus or irreducible polynomial function to N registers according
* (3) Write the point G(x, y) to X1, Y1 registers
* (4) Write the random integer k to K register
* (5) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Write the curve order and curve length to N ,M registers according
* (10) Write 0x0 to Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (13) Set START(CRPT_ECC_CTL[0]) to 1 *
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Read X1 registers to get r
*/
/* 3-(4) Write the random integer k to K register */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(k, crpt->ECC_K);
run_ecc_codec(crpt, ECCOP_POINT_MUL);
/* 3-(9) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(10) Write 0x0 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
/* 3-(15) Read X1 registers to get r */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result1, R);
/*
2021-05-14 11:53:46 +08:00
* 4. Compute s = k ? 1 * (e + d * r)(mod n). If s = 0, go to step 2
* (1) Write the curve order to N registers according
* (2) Write 0x1 to Y1 registers
* (3) Write the random integer k to X1 registers according
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set START(CRPT_ECC_CTL[0]) to 1
* (7) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (8) Read X1 registers to get k^-1
* (9) Write the curve order and curve length to N ,M registers
* (10) Write r, d to X1, Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (13) Set START(CRPT_ECC_CTL[0]) to 1
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Write the curve order to N registers
* (16) Write e to Y1 registers
* (17) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (18) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (19) Set START(CRPT_ECC_CTL[0]) to 1
* (20) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (21) Write the curve order and curve length to N ,M registers
* (22) Write k^-1 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (27) Read X1 registers to get s
*/
/* S/W: GFp_add_mod_order(pCurve->key_len+2, 0, x1, a, R); */
/* 4-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2) Write 0x1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_Y1[0] = 0x1UL;
/* 4-(3) Write the random integer k to X1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(k, crpt->ECC_X1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(7) output = %s\n", temp_hex_str);
#endif
/* 4-(8) Read X1 registers to get k^-1 */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("k^-1 = %s\n", temp_hex_str);
#endif
/* 4-(9) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(10) Write r, d to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_result1[i];
}
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(d, crpt->ECC_Y1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(14) output = %s\n", temp_hex_str);
#endif
/* 4-(15) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(16) Write e to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(message, crpt->ECC_Y1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(20) output = %s\n", temp_hex_str);
#endif
/* 4-(21) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(22) Write k^-1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(27) Read X1 registers to get s */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result2, S);
} /* ret == 0 */
return ret;
}
/**
* @brief ECDSA dogotal signature verification.
* @param[in] crpt Reference to Crypto module.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] public_k1 The public key 1.
* @param[in] public_k2 The public key 2.
* @param[in] R R of the (R,S) pair digital signature
* @param[in] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
* @return -2 Verification failed.
*/
int32_t ECC_VerifySignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
char *public_k1, char *public_k2, char *R, char *S)
{
uint32_t temp_result1[18], temp_result2[18];
uint32_t temp_x[18], temp_y[18];
int32_t i, ret = 0;
/*
* 1. Verify that r and s are integers in the interval [1, n-1]. If not, the signature is invalid
* 2. Compute e = HASH (m), where HASH is the hashing algorithm in signature generation
* (1) Use SHA to calculate e
*/
/*
* 3. Compute w = s^-1 (mod n)
* (1) Write the curve order to N registers
* (2) Write 0x1 to Y1 registers
* (3) Write s to X1 registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Read X1 registers to get w
*/
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
/* 3-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(2) Write 0x1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_Y1[0] = 0x1UL;
/* 3-(3) Write s to X1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(S, crpt->ECC_X1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
/* 3-(9) Read X1 registers to get w */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
CRPT_DBGMSG("e = %s\n", message);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("w = %s\n", temp_hex_str);
CRPT_DBGMSG("o = %s (order)\n", pCurve->Eorder);
#endif
/*
2021-05-14 11:53:46 +08:00
* 4. Compute u1 = e * w (mod n) and u2 = r * w (mod n)
* (1) Write the curve order and curve length to N ,M registers
* (2) Write e, w to X1, Y1 registers
* (3) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (4) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1 registers to get u1
* (8) Write the curve order and curve length to N ,M registers
* (9) Write r, w to X1, Y1 registers
* (10) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (11) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Read X1 registers to get u2
*/
/* 4-(1) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2) Write e, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(message, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(7) Read X1 registers to get u1 */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("u1 = %s\n", temp_hex_str);
#endif
/* 4-(8) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(9) Write r, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(R, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(14) Read X1 registers to get u2 */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("u2 = %s\n", temp_hex_str);
#endif
/*
2021-05-14 11:53:46 +08:00
* 5. Compute X' (x1' y1') = u1 * G + u2 * Q
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
* (3) Write u1 to K registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1, Y1 registers to get u1*G
* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (9) Write the public key Q(x,y) to X1, Y1 registers
* (10) Write u2 to K registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (15) Write the result data u1*G to X2, Y2 registers
* (16) Set ECCOP(CRPT_ECC_CTL[10:9]) to 10
* (17) Set START(CRPT_ECC_CTL[0]) to 1
* (18) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
2021-05-14 11:53:46 +08:00
* (19) Read X1, Y1 registers to get X('x1', y1')
* (20) Write the curve order and curve length to N ,M registers
2021-05-14 11:53:46 +08:00
* (21) Write x1' to X1 registers
* (22) Write 0x0 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
2021-05-14 11:53:46 +08:00
* (27) Read X1 registers to get x1' (mod n)
*
2021-05-14 11:53:46 +08:00
* 6. The signature is valid if x1' = r, otherwise it is invalid
*/
/*
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
*/
ecc_init_curve(crpt, ecc_curve);
/* (3) Write u1 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result1[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
/* (7) Read X1, Y1 registers to get u1*G */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, y = %s\n", temp_hex_str);
#endif
/* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* (9) Write the public key Q(x,y) to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
/* (10) Write u2 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
temp_result2[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, y = %s\n", temp_hex_str);
#endif
/* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* Write the result data u2*Q to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_result1[i];
crpt->ECC_Y1[i] = temp_result2[i];
}
/* (15) Write the result data u1*G to X2, Y2 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X2[i] = temp_x[i];
crpt->ECC_Y2[i] = temp_y[i];
}
run_ecc_codec(crpt, ECCOP_POINT_ADD);
2021-05-14 11:53:46 +08:00
/* (19) Read X1, Y1 registers to get X'(x1' y1') */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(19) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(19) y' = %s\n", temp_hex_str);
#endif
/* (20) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/*
2021-05-14 11:53:46 +08:00
* (21) Write x1' to X1 registers
* (22) Write 0x0 to Y1 registers
*/
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_x[i];
crpt->ECC_Y1[i] = 0UL;
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(21) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, temp_hex_str);
CRPT_DBGMSG("5-(22) y' = %s\n", temp_hex_str);
#endif
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
2021-05-14 11:53:46 +08:00
/* (27) Read X1 registers to get x1' (mod n) */
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(27) x1' (mod n) = %s\n", temp_hex_str);
2021-05-14 11:53:46 +08:00
/* 6. The signature is valid if x1' = r, otherwise it is invalid */
/* Compare with test pattern to check if r is correct or not */
if (ecc_strcmp(temp_hex_str, R) != 0)
{
CRPT_DBGMSG("x1' (mod n) != R Test filed!!\n");
CRPT_DBGMSG("Signature R [%s] is not matched with expected R [%s]!\n", temp_hex_str, R);
ret = -2;
}
} /* ret == 0 */
return ret;
}
/*-----------------------------------------------------------------------------------------------*/
/* */
/* RSA */
/* */
/*-----------------------------------------------------------------------------------------------*/
/** @cond HIDDEN_SYMBOLS */
#define MAX_DIGIT 0xFFFFFFFFUL
#define MAX_HALF_DIGIT 0xFFFFUL /* NB 'L' */
#define BITS_PER_DIGIT 32
#define HIBITMASK 0x80000000UL
#define MAX_FIXED_BIT_LENGTH 8192
#define MAX_FIXED_DIGITS ((MAX_FIXED_BIT_LENGTH + BITS_PER_DIGIT - 1) / BITS_PER_DIGIT)
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif
static uint32_t qq[MAX_FIXED_DIGITS * 2];
static uint32_t rr[MAX_FIXED_DIGITS * 2];
/** Returns number of significant digits in a */
static int mpSizeof(const uint32_t a[], int ndigits)
{
while (ndigits--)
{
if (a[ndigits] != 0)
return (++ndigits);
}
return 0;
}
static int mpBitLength(const uint32_t d[], int ndigits)
/* Returns no of significant bits in d */
{
int n, i, bits;
uint32_t mask;
if (!d || ndigits == 0)
return 0;
n = mpSizeof(d, ndigits);
if (0 == n) return 0;
for (i = 0, mask = HIBITMASK; mask > 0; mask >>= 1, i++)
{
if (d[n - 1] & mask)
break;
}
bits = n * BITS_PER_DIGIT - i;
return bits;
}
static int mpGetBit(const uint32_t a[], int ndigits, int ibit)
/* Returns value 1 or 0 of bit n (0..nbits-1); or -1 if out of range */
{
int idigit, bit_to_get;
uint32_t mask;
/* Which digit? (0-based) */
idigit = ibit / BITS_PER_DIGIT;
if (idigit >= ndigits)
return -1;
/* Set mask */
bit_to_get = ibit % BITS_PER_DIGIT;
mask = 0x01 << bit_to_get;
return ((a[idigit] & mask) ? 1 : 0);
}
static uint32_t mpSetZero(volatile uint32_t a[], int ndigits)
{
/* Sets a = 0 */
/* Prevent optimiser ignoring this */
volatile uint32_t optdummy;
volatile uint32_t *p = a;
while (ndigits--)
a[ndigits] = 0;
optdummy = *p;
return optdummy;
}
static void mpSetEqual(uint32_t a[], const uint32_t b[], int ndigits)
{
/* Sets a = b */
int i;
for (i = 0; i < ndigits; i++)
{
a[i] = b[i];
}
}
static void mpSetDigit(uint32_t a[], uint32_t d, int ndigits)
{
/* Sets a = d where d is a single digit */
int i;
for (i = 1; i < ndigits; i++)
{
a[i] = 0;
}
a[0] = d;
}
/** Returns sign of (a - b) as 0, +1 or -1. Not constant-time. */
static int mpCompare(const uint32_t a[], const uint32_t b[], int ndigits)
{
/* if (ndigits == 0) return 0; // deleted [v2.5] */
while (ndigits--)
{
if (a[ndigits] > b[ndigits])
return 1; /* GT */
if (a[ndigits] < b[ndigits])
return -1; /* LT */
}
return 0; /* EQ */
}
static uint32_t mpShiftLeft(uint32_t a[], const uint32_t *b,
int shift, int ndigits)
{
/* Computes a = b << shift */
/* [v2.1] Modified to cope with shift > BITS_PERDIGIT */
int i, y, nw, bits;
uint32_t mask, carry, nextcarry;
/* Do we shift whole digits? */
if (shift >= BITS_PER_DIGIT)
{
nw = shift / BITS_PER_DIGIT;
i = ndigits;
while (i--)
{
if (i >= nw)
a[i] = b[i - nw];
else
a[i] = 0;
}
/* Call again to shift bits inside digits */
bits = shift % BITS_PER_DIGIT;
carry = b[ndigits - nw] << bits;
if (bits)
carry |= mpShiftLeft(a, a, bits, ndigits);
return carry;
}
else
{
bits = shift;
}
/* Construct mask = high bits set */
mask = ~(~(uint32_t)0 >> bits);
y = BITS_PER_DIGIT - bits;
carry = 0;
for (i = 0; i < ndigits; i++)
{
nextcarry = (b[i] & mask) >> y;
a[i] = b[i] << bits | carry;
carry = nextcarry;
}
return carry;
}
static uint32_t mpShiftRight(uint32_t a[], const uint32_t b[], int shift, int ndigits)
{
/* Computes a = b >> shift */
/* [v2.1] Modified to cope with shift > BITS_PERDIGIT */
int i, y, nw, bits;
uint32_t mask, carry, nextcarry;
/* Do we shift whole digits? */
if (shift >= BITS_PER_DIGIT)
{
nw = shift / BITS_PER_DIGIT;
for (i = 0; i < ndigits; i++)
{
if ((i + nw) < ndigits)
a[i] = b[i + nw];
else
a[i] = 0;
}
/* Call again to shift bits inside digits */
bits = shift % BITS_PER_DIGIT;
carry = b[nw - 1] >> bits;
if (bits)
carry |= mpShiftRight(a, a, bits, ndigits);
return carry;
}
else
{
bits = shift;
}
/* Construct mask to set low bits */
/* (thanks to Jesse Chisholm for suggesting this improved technique) */
mask = ~(~(uint32_t)0 << bits);
y = BITS_PER_DIGIT - bits;
carry = 0;
i = ndigits;
while (i--)
{
nextcarry = (b[i] & mask) << y;
a[i] = b[i] >> bits | carry;
carry = nextcarry;
}
return carry;
}
static uint32_t spDivide(uint32_t *pq, uint32_t *pr, const uint32_t u[2], uint32_t v)
{
uint64_t uu, q;
uu = (uint64_t)u[1] << 32 | (uint64_t)u[0];
q = uu / (uint64_t)v;
//r = uu % (uint64_t)v;
*pr = (uint32_t)(uu - q * v);
*pq = (uint32_t)(q & 0xFFFFFFFF);
return (uint32_t)(q >> 32);
}
static int spMultiply(uint32_t p[2], uint32_t x, uint32_t y)
{
/* Use a 64-bit temp for product */
uint64_t t = (uint64_t)x * (uint64_t)y;
/* then split into two parts */
p[1] = (uint32_t)(t >> 32);
p[0] = (uint32_t)(t & 0xFFFFFFFF);
return 0;
}
static uint32_t mpMultSub(uint32_t wn, uint32_t w[], const uint32_t v[],
uint32_t q, int n)
{
/* Compute w = w - qv
where w = (WnW[n-1]...W[0])
return modified Wn.
*/
uint32_t k, t[4];
int i;
if (q == 0) /* No change */
return wn;
k = 0;
for (i = 0; i < n; i++)
{
spMultiply(t, q, v[i]);
w[i] -= k;
if (w[i] > MAX_DIGIT - k)
k = 1;
else
k = 0;
w[i] -= t[0];
if (w[i] > MAX_DIGIT - t[0])
k++;
k += t[1];
}
/* Cope with Wn not stored in array w[0..n-1] */
wn -= k;
return wn;
}
static uint32_t mpShortDiv(uint32_t q[], const uint32_t u[], uint32_t v,
int ndigits)
{
/* Calculates quotient q = u div v
Returns remainder r = u mod v
where q, u are multiprecision integers of ndigits each
and r, v are single precision digits.
Makes no assumptions about normalisation.
Ref: Knuth Vol 2 Ch 4.3.1 Exercise 16 p625
*/
int j;
uint32_t t[4], r;
int shift;
uint32_t bitmask, overflow, *uu;
if (ndigits == 0) return 0;
if (v == 0) return 0; /* Divide by zero error */
/* Normalise first */
/* Requires high bit of V
to be set, so find most signif. bit then shift left,
i.e. d = 2^shift, u' = u * d, v' = v * d.
*/
bitmask = HIBITMASK;
for (shift = 0; shift < BITS_PER_DIGIT; shift++)
{
if (v & bitmask)
break;
bitmask >>= 1;
}
if (shift == BITS_PER_DIGIT) return 0; /* Avoid cppcheck false-alarm. */
v <<= shift;
overflow = mpShiftLeft(q, u, shift, ndigits);
uu = q;
/* Step S1 - modified for extra digit. */
r = overflow; /* New digit Un */
j = ndigits;
while (j--)
{
/* Step S2. */
t[1] = r;
t[0] = uu[j];
overflow = spDivide(&q[j], &r, t, v);
}
/* Unnormalise */
r >>= shift;
return r;
}
static int QhatTooBig(uint32_t qhat, uint32_t rhat,
uint32_t vn2, uint32_t ujn2)
{
/* Returns true if Qhat is too big
i.e. if (Qhat * Vn-2) > (b.Rhat + Uj+n-2)
*/
uint32_t t[4];
spMultiply(t, qhat, vn2);
if (t[1] < rhat)
return 0;
else if (t[1] > rhat)
return 1;
else if (t[0] > ujn2)
return 1;
return 0;
}
static uint32_t mpAdd(uint32_t w[], const uint32_t u[], const uint32_t v[], int ndigits)
{
/* Calculates w = u + v
where w, u, v are multiprecision integers of ndigits each
Returns carry if overflow. Carry = 0 or 1.
Ref: Knuth Vol 2 Ch 4.3.1 p 266 Algorithm A.
*/
uint32_t k;
int j;
// assert(w != v);
/* Step A1. Initialise */
k = 0;
for (j = 0; j < ndigits; j++)
{
/* Step A2. Add digits w_j = (u_j + v_j + k)
Set k = 1 if carry (overflow) occurs
*/
w[j] = u[j] + k;
if (w[j] < k)
k = 1;
else
k = 0;
w[j] += v[j];
if (w[j] < v[j])
k++;
} /* Step A3. Loop on j */
return k; /* w_n = k */
}
static int mpDivide(uint32_t q[], uint32_t r[], const uint32_t u[],
int udigits, uint32_t v[], int vdigits)
{
/* Computes quotient q = u / v and remainder r = u mod v
where q, r, u are multiple precision digits
all of udigits and the divisor v is vdigits.
Ref: Knuth Vol 2 Ch 4.3.1 p 272 Algorithm D.
Do without extra storage space, i.e. use r[] for
normalised u[], unnormalise v[] at end, and cope with
extra digit Uj+n added to u after normalisation.
WARNING: this trashes q and r first, so cannot do
u = u / v or v = u mod v.
It also changes v temporarily so cannot make it const.
*/
int shift;
int n, m, j;
uint32_t bitmask, overflow;
uint32_t qhat, rhat, t[4];
uint32_t *uu, *ww;
int qhatOK, cmp;
/* Clear q and r */
mpSetZero(q, udigits);
mpSetZero(r, udigits);
/* Work out exact sizes of u and v */
n = (int)mpSizeof(v, vdigits);
m = (int)mpSizeof(u, udigits);
m -= n;
/* Catch special cases */
if (n == 0)
return -1; /* Error: divide by zero */
if (n == 1)
{
/* Use short division instead */
r[0] = mpShortDiv(q, u, v[0], udigits);
return 0;
}
if (m < 0)
{
/* v > u, so just set q = 0 and r = u */
mpSetEqual(r, u, udigits);
return 0;
}
if (m == 0)
{
/* u and v are the same length */
cmp = mpCompare(u, v, (int)n);
if (cmp < 0)
{
/* v > u, as above */
mpSetEqual(r, u, udigits);
return 0;
}
else if (cmp == 0)
{
/* v == u, so set q = 1 and r = 0 */
mpSetDigit(q, 1, udigits);
return 0;
}
}
/* In Knuth notation, we have:
Given
u = (Um+n-1 ... U1U0)
v = (Vn-1 ... V1V0)
Compute
q = u/v = (QmQm-1 ... Q0)
r = u mod v = (Rn-1 ... R1R0)
*/
/* Step D1. Normalise */
/* Requires high bit of Vn-1
to be set, so find most signif. bit then shift left,
i.e. d = 2^shift, u' = u * d, v' = v * d.
*/
bitmask = HIBITMASK;
for (shift = 0; shift < BITS_PER_DIGIT; shift++)
{
if (v[n - 1] & bitmask)
break;
bitmask >>= 1;
}
/* Normalise v in situ - NB only shift non-zero digits */
overflow = mpShiftLeft(v, v, shift, n);
/* Copy normalised dividend u*d into r */
overflow = mpShiftLeft(r, u, shift, n + m);
uu = r; /* Use ptr to keep notation constant */
t[0] = overflow; /* Extra digit Um+n */
/* Step D2. Initialise j. Set j = m */
for (j = m; j >= 0; j--)
{
/* Step D3. Set Qhat = [(b.Uj+n + Uj+n-1)/Vn-1]
and Rhat = remainder */
qhatOK = 0;
t[1] = t[0]; /* This is Uj+n */
t[0] = uu[j + n - 1];
overflow = spDivide(&qhat, &rhat, t, v[n - 1]);
/* Test Qhat */
if (overflow)
{
/* Qhat == b so set Qhat = b - 1 */
qhat = MAX_DIGIT;
rhat = uu[j + n - 1];
rhat += v[n - 1];
if (rhat < v[n - 1]) /* Rhat >= b, so no re-test */
qhatOK = 1;
}
/* [VERSION 2: Added extra test "qhat && "] */
if (qhat && !qhatOK && QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
{
/* If Qhat.Vn-2 > b.Rhat + Uj+n-2
decrease Qhat by one, increase Rhat by Vn-1
*/
qhat--;
rhat += v[n - 1];
/* Repeat this test if Rhat < b */
if (!(rhat < v[n - 1]))
if (QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
qhat--;
}
/* Step D4. Multiply and subtract */
ww = &uu[j];
overflow = mpMultSub(t[1], ww, v, qhat, (int)n);
/* Step D5. Test remainder. Set Qj = Qhat */
q[j] = qhat;
if (overflow)
{
/* Step D6. Add back if D4 was negative */
q[j]--;
overflow = mpAdd(ww, ww, v, (int)n);
}
t[0] = uu[j + n - 1]; /* Uj+n on next round */
} /* Step D7. Loop on j */
/* Clear high digits in uu */
for (j = n; j < m + n; j++)
uu[j] = 0;
/* Step D8. Unnormalise. */
mpShiftRight(r, r, shift, n);
mpShiftRight(v, v, shift, n);
return 0;
}
/***************************/
static int mpModulo(uint32_t r[], const uint32_t u[], int udigits,
uint32_t v[], int vdigits)
{
/* Computes r = u mod v
where r, v are multiprecision integers of length vdigits
and u is a multiprecision integer of length udigits.
r may overlap v.
Note that r here is only vdigits long,
whereas in mpDivide it is udigits long.
Use remainder from mpDivide function.
*/
int nn = max(udigits, vdigits);
// [v2.6] increased to two times
if (nn > (MAX_FIXED_DIGITS * 2))
{
printf("Error!! mpModulo nn overflow!\n");
return -1;
}
/* rr[nn] = u mod v */
mpDivide(qq, rr, u, udigits, v, vdigits);
/* Final r is only vdigits long */
mpSetEqual(r, rr, vdigits);
return 0;
}
static void Hex2Binary(char *input, char *output)
{
int i, j, idx, n, klen;
char *p = (char *)input;
klen = strlen(input);
if ((klen + 3) > RSA_KBUF_HLEN)
{
printf("Hex2Binary overflow!! %d > %d\n", klen + 3, RSA_KBUF_HLEN);
}
klen = strlen(input) * 4;
memset(output, 0, RSA_KBUF_BLEN);
output[klen] = 0;
output[klen + 1] = 0;
idx = klen - 1;
for (i = 0; *p != 0; i++, p++)
{
if (input[i] <= '9')
{
n = input[i] - '0';
}
else if (input[i] >= 'a')
{
n = input[i] - 'a' + 10;
}
else
{
n = input[i] - 'A' + 10;
}
for (j = 3; j >= 0; j--)
{
output[idx--] = (n >> j) & 0x1;
}
}
if (idx != -1)
{
printf("Hex2Binary unexpected error!!\n");
}
}
static void Binary2Hex(int length, char *input, char *output)
{
int i, idx, n, slen;
memset(output, 0, RSA_KBUF_HLEN);
slen = length / 4;
idx = slen - 1;
for (i = 0; i < length; i += 4)
{
n = (input[i]) | (input[i + 1] << 1) | (input[i + 2] << 2) | (input[i + 3] << 3);
if (n >= 10)
output[idx] = n - 10 + 'A';
else
output[idx] = n + '0';
idx--;
}
if (idx != -1)
{
printf("Binary2Hex unecpected error! %d\n", idx);
}
}
#define Hardware_length (2096)
static uint32_t C_t[(2096 * 2) / 32];
static uint32_t N_t[(2096 * 2) / 32];
static char C[RSA_KBUF_BLEN], N[RSA_KBUF_BLEN];
/** @endcond HIDDEN_SYMBOLS */
/**
* @brief Calculate the constant value of Montgomery domain.
* @param[in] length RSA bit length.
* @param[in] rsa_N The base of modulus operation.
* @param[out] rsa_C The constant value of Montgomery domain required by NUC980 RSA engine.
*/
void RSA_Calculate_C(int length, char *rsa_N, char *rsa_C)
{
int i, v, nbits;
uint32_t j;
int scale = (length + 2) * 2;
size_t word_size = (scale / 32) + 1;
memset(rsa_C, 0, length / 4 + 2);
Hex2Binary(rsa_N, N);
memset(C_t, 0, sizeof(C_t));
C_t[word_size - 1] = (uint32_t)(1 << scale - (32 * (word_size - 1)));
// convert char to uint32_t
memset(N_t, 0, sizeof(N_t));
j = 0;
for (i = 0; i < length; i++)
{
if (N[i])
{
j += 1 << (i % 32);
}
if ((i % 32) == 31)
{
N_t[(i / 32)] = j;
j = 0;
}
}
mpModulo(C_t, C_t, word_size, N_t, word_size);
// convert uint32_t to char
nbits = (int)mpBitLength(C_t, word_size);
for (i = Hardware_length; i >= 0; i--)
{
if (i > nbits)
C[i] = 0;
else
{
v = mpGetBit(C_t, word_size, i);
C[i] = v ? 1 : 0;
}
}
Binary2Hex(length, C, rsa_C);
}
/**
* @brief RSA digital signature generation.
* @param[in] crpt Reference to Crypto module.
* @param[in] rsa_len RSA key length
* @param[in] n The modulus for both the public and private keys
* @param[in] d (n,d) is the private key
* @param[in] C The constant value of Montgomery domain.
* @param[in] msg The message to be signed.
* @param[out] sig The output signature.
* @return 0 Success.
* @return -1 Error
*/
int32_t RSA_GenerateSignature(CRPT_T *crpt, int rsa_len, char *n, char *d, char *C,
char *msg, char *sig)
{
int i;
for (i = 0; i < 128; i++)
{
crpt->RSA_N[i] = 0;
crpt->RSA_E[i] = 0;
crpt->RSA_M[i] = 0;
}
Hex2Reg(n, (uint32_t *)&crpt->RSA_N[0]);
Hex2Reg(d, (uint32_t *)&crpt->RSA_E[0]);
Hex2Reg(msg, (uint32_t *)&crpt->RSA_M[0]);
Hex2Reg(C, (uint32_t *)&crpt->RSA_C[0]);
CRPT->RSA_CTL = (rsa_len << CRPT_RSA_CTL_KEYLEN_Pos) | CRPT_RSA_CTL_START_Msk;
while (CRPT->RSA_STS & CRPT_RSA_STS_BUSY_Msk) ;
Reg2Hex(rsa_len / 4, (uint32_t *)CRPT->RSA_M, sig);
return 0;
}
/**
* @brief RSA digital signature generation.
* @param[in] crpt Reference to Crypto module.
* @param[in] rsa_len RSA key length
* @param[in] n The modulus for both the public and private keys
* @param[in] e (n,e) is the public key
* @param[in] C The constant value of Montgomery domain.
* @param[in] sig The signature to be verified.
* @param[out] msg The message to be compared.
* @return 0 Success.
* @return -1 Verify failed
*/
int32_t RSA_VerifySignature(CRPT_T *crpt, int rsa_len, char *n, char *e, char *C,
char *sig, char *msg)
{
char output[RSA_KBUF_HLEN];
int i;
for (i = 0; i < 128; i++)
{
crpt->RSA_N[i] = 0;
crpt->RSA_E[i] = 0;
crpt->RSA_M[i] = 0;
}
Hex2Reg(n, (uint32_t *)&crpt->RSA_N[0]);
Hex2Reg(e, (uint32_t *)&crpt->RSA_E[0]);
Hex2Reg(sig, (uint32_t *)&crpt->RSA_M[0]);
Hex2Reg(C, (uint32_t *)&crpt->RSA_C[0]);
CRPT->RSA_CTL = (rsa_len << CRPT_RSA_CTL_KEYLEN_Pos) | CRPT_RSA_CTL_START_Msk;
while (CRPT->RSA_STS & CRPT_RSA_STS_BUSY_Msk) ;
Reg2Hex(rsa_len / 4, (uint32_t *)CRPT->RSA_M, output);
printf("RSA verify: %s\n", output);
if (ecc_strcmp(output, msg) != 0)
{
CRPT_DBGMSG("RSA verify output [%s] is not matched with expected [%s]!\n", output, msg);
return -1;
}
return 0;
}
/*@}*/ /* end of group CRYPTO_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group CRYPTO_Driver */
/*@}*/ /* end of group Standard_Driver */
/*** (C) COPYRIGHT 2018 Nuvoton Technology Corp. ***/