rt-thread-official/src/module.c

424 lines
12 KiB
C
Raw Normal View History

/*
* File : module.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-09 Bernard first version
* 2010-04-09 yi.qiu implement based on first version
*/
#include <rtm.h>
#include <rtthread.h>
#include "module.h"
#include "kservice.h"
/* #define RT_MODULE_DEBUG */
#define elf_module ((Elf32_Ehdr *)module_ptr)
#define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
#define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
#define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
#define IS_REL(s) (s.sh_type == SHT_REL)
#define IS_RELA(s) (s.sh_type == SHT_RELA)
#define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
#define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
#define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
#ifdef RT_USING_MODULE
rt_list_t rt_module_symbol_list;
struct rt_module* rt_current_module;
struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL;
void rt_system_module_init()
{
#ifdef __CC_ARM
extern int RTMSymTab$$Base;
extern int RTMSymTab$$Limit;
_rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base;
_rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit;
#elif defined(__GNUC__)
extern int __rtmsymtab_start;
extern int __rtmsymtab_end;
_rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
_rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
#endif
rt_list_init(&rt_module_symbol_list);
}
rt_uint32_t rt_module_symbol_find(const rt_uint8_t* sym_str)
{
/* find in kernel symbol table */
struct rt_module_symtab* index;
for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++)
{
if (strcmp(index->name, (const char*)sym_str) == 0)
return index->addr;
}
return 0;
}
int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val, rt_uint32_t module_addr)
{
Elf32_Addr *where, tmp;
Elf32_Sword addend;
where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset - module_addr);
switch (ELF32_R_TYPE(rel->r_info))
{
case R_ARM_NONE:
break;
case R_ARM_ABS32:
*where += (Elf32_Addr)sym_val;
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where);
#endif
break;
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_CALL:
case R_ARM_JUMP24:
addend = *where & 0x00ffffff;
if (addend & 0x00800000)
addend |= 0xff000000;
tmp = sym_val - (Elf32_Addr)where + (addend << 2);
tmp >>= 2;
*where = (*where & 0xff000000) | (tmp & 0x00ffffff);
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where);
#endif
break;
default:
return -1;
}
return 0;
}
static void rt_module_init_object_container(struct rt_module* module)
{
RT_ASSERT(module != RT_NULL);
/* init object container - thread */
rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
#ifdef RT_USING_SEMAPHORE
/* init object container - semaphore */
rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
#endif
#ifdef RT_USING_MUTEX
/* init object container - mutex */
rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
#endif
#ifdef RT_USING_EVENT
/* init object container - event */
rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
#endif
#ifdef RT_USING_MAILBOX
/* init object container - mailbox */
rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* init object container - message queue */
rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
#endif
#ifdef RT_USING_MEMPOOL
/* init object container - memory pool */
rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
#endif
#ifdef RT_USING_DEVICE
/* init object container - device */
rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
#endif
/* init object container - timer */
rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
}
struct rt_module* rt_module_load(void* module_ptr, const rt_uint8_t* name)
{
rt_uint32_t index, rodata_addr = 0, bss_addr = 0;
rt_uint32_t module_addr = 0, module_size = 0;
struct rt_module* module = RT_NULL;
rt_uint8_t *ptr, *strtab, *shstrab;
#ifdef RT_MODULE_DEBUG
rt_kprintf("rt_module_load: %s\n", name);
#endif
/* check ELF header */
if (rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0 ||
elf_module->e_ident[EI_CLASS] != ELFCLASS32)
return RT_NULL;
/* get the ELF image size */
for (index = 0; index < elf_module->e_shnum; index++)
{
/* text */
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
{
module_size += shdr[index].sh_size;
module_addr = shdr[index].sh_addr;
}
/* rodata */
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
{
module_size += shdr[index].sh_size;
}
/* data */
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
{
module_size += shdr[index].sh_size;
}
/* bss */
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
{
module_size += shdr[index].sh_size;
}
}
/* no text, data and bss on image */
if (module_size == 0) return module;
/* allocate module */
module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name);
if (module == RT_NULL) return module;
/* allocate module space */
module->module_space = rt_malloc(module_size);
if (module->module_space == RT_NULL)
{
rt_object_delete(&(module->parent));
return RT_NULL;
}
/* zero all space */
ptr = module->module_space;
rt_memset(ptr, 0, module_size);
/* load text and data section */
for (index = 0; index < elf_module->e_shnum; index++)
{
/* load text section */
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
{
rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size);
ptr += shdr[index].sh_size;
}
/* load rodata section */
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
{
rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size);
rodata_addr = (rt_uint32_t)ptr;
ptr += shdr[index].sh_size;
}
/* load data section */
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
{
module->module_data = (rt_uint32_t)ptr;
rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size);
ptr += shdr[index].sh_size;
}
/* load bss section */
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
{
bss_addr = (rt_uint32_t)ptr;
rt_memset(ptr, 0, shdr[index].sh_size);
}
}
/* set module entry */
module->module_entry = (rt_uint8_t*)module->module_space + elf_module->e_entry - module_addr;
/* handle relocation section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
if (IS_REL(shdr[index]))
{
rt_uint32_t i, nr_reloc;
Elf32_Sym *symtab;
Elf32_Rel *rel;
/* get relocate item */
rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
/* locate .dynsym and .dynstr */
symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset);
strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset;
nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel));
/* relocate every items */
for (i = 0; i < nr_reloc; i ++)
{
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
#ifdef RT_MODULE_DEBUG
rt_kprintf("relocate symbol: %s\n", strtab + sym->st_name);
#endif
if (sym->st_shndx != STN_UNDEF)
{
if(ELF_ST_TYPE(sym->st_info) == STT_SECTION)
{
if (rt_strncmp(shstrab + shdr[sym->st_shndx].sh_name, ELF_RODATA, 8) == 0)
{
/* relocate rodata section */
rt_module_arm_relocate(module, rel,
(Elf32_Addr)(rodata_addr),
module_addr);
}
else if(strncmp(shstrab + shdr[sym->st_shndx].sh_name, ELF_BSS, 5) == 0)
{
/* relocate bss section */
rt_module_arm_relocate(module, rel, (Elf32_Addr)bss_addr, module_addr);
}
}
else if(ELF_ST_TYPE(sym->st_info) == STT_FUNC )
{
/* relocate function */
rt_module_arm_relocate(module, rel,
(Elf32_Addr)((rt_uint8_t*)module->module_space - module_addr + sym->st_value),
module_addr);
}
else if(ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
{
/* relocate object in data section */
rt_module_arm_relocate(module, rel,
(Elf32_Addr)(module->module_data + sym->st_value),
module_addr);
}
}
else
{
Elf32_Addr addr;
#ifdef RT_MODULE_DEBUG
rt_kprintf("unresolved relocate symbol: %s\n", strtab + sym->st_name);
#endif
/* need to resolve symbol in kernel symbol table */
addr = rt_module_symbol_find(strtab + sym->st_name);
if (addr != (Elf32_Addr)RT_NULL)
rt_module_arm_relocate(module, rel, addr, module_addr);
else rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name);
}
rel ++;
}
}
}
/* init module object container */
rt_module_init_object_container(module);
/* set module defalut clean type */
module->parent.flag |= RT_MODULE_FLAG_AUTO_CLEAN;
/* create module main thread */
module->module_thread = rt_thread_create((const char*)name,
module->module_entry, RT_NULL,
512, 90, 10);
module->module_thread->module_parent = module;
rt_thread_startup(module->module_thread);
return module;
}
void rt_module_unload(struct rt_module* module)
{
int i;
struct rt_object* object;
struct rt_timer *timer;
struct rt_list_node *list, *node;
/* suspend module main thread */
if (module->module_thread->stat == RT_THREAD_READY)
rt_thread_suspend(module->module_thread);
/* delete all module object */
for(i = RT_Object_Class_Thread; i < RT_Object_Class_Module; i++)
{
list = &module->module_object[i].object_list;
for (node = list->next; node != list; node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
rt_object_delete(object);
}
}
/* release module memory */
rt_free(module->module_space);
rt_object_delete((struct rt_object *)module);
}
rt_module_t rt_module_find(char* name)
{
struct rt_object_information *information;
struct rt_object* object;
struct rt_list_node* node;
extern struct rt_object_information rt_object_container[];
/* enter critical */
rt_enter_critical();
/* try to find device object */
information = &rt_object_container[RT_Object_Class_Thread];
for (node = information->object_list.next; node != &(information->object_list); node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
{
/* leave critical */
rt_exit_critical();
return (rt_module_t)object;
}
}
/* leave critical */
rt_exit_critical();
/* not found */
return RT_NULL;
}
#endif