4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 01:37:24 +08:00

1472 lines
43 KiB
C
Raw Normal View History

/*
* Copyright (c) 2022-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-03-08 HPMicro First version
* 2022-07-28 HPMicro Fix compiling warning if RT_SERIAL_USING_DMA was not defined
* 2022-08-08 HPMicro Integrate DMA Manager and support dynamic DMA resource assignment'
* 2023-03-07 HPMicro Fix the issue that the data_width was not initialized before setup dma handshake
*
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_uart_v2.h"
#include "hpm_uart_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_l1c_drv.h"
#include "hpm_dma_mgr.h"
#include "hpm_soc.h"
#ifdef RT_USING_SERIAL_V2
#ifdef RT_SERIAL_USING_DMA
#define BOARD_UART_DMAMUX HPM_DMAMUX
#define UART_DMA_TRIGGER_LEVEL (1U)
typedef struct dma_channel {
struct rt_serial_device *serial;
dma_resource_t resource;
void (*tranfer_done)(struct rt_serial_device *serial);
void (*tranfer_abort)(struct rt_serial_device *serial);
void (*tranfer_error)(struct rt_serial_device *serial);
} hpm_dma_channel_handle_t;
//static struct dma_channel dma_channels[DMA_SOC_CHANNEL_NUM];
static int hpm_uart_dma_config(struct rt_serial_device *serial, void *arg);
static void hpm_uart_receive_dma_next(struct rt_serial_device *serial);
#endif
#define UART_ROOT_CLK_FREQ BOARD_APP_UART_SRC_FREQ
struct hpm_uart {
UART_Type *uart_base;
uint32_t irq_num;
struct rt_serial_device *serial;
char *device_name;
#ifdef RT_SERIAL_USING_DMA
uint32_t tx_dma_mux;
uint32_t rx_dma_mux;
uint32_t dma_flags;
hpm_dma_channel_handle_t tx_chn_ctx;
hpm_dma_channel_handle_t rx_chn_ctx;
bool tx_resource_allocated;
bool rx_resource_allocated;
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1) && defined(RT_SERIAL_USING_DMA)
ATTR_ALIGN(HPM_L1C_CACHELINE_SIZE) uint8_t rx_idle_tmp_buffer[1024];
#endif
#endif
};
extern void init_uart_pins(UART_Type *ptr);
static void hpm_uart_isr(struct rt_serial_device *serial);
static rt_err_t hpm_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg);
static rt_err_t hpm_uart_control(struct rt_serial_device *serial, int cmd, void *arg);
static int hpm_uart_putc(struct rt_serial_device *serial, char ch);
static int hpm_uart_getc(struct rt_serial_device *serial);
#ifdef RT_SERIAL_USING_DMA
int hpm_uart_dma_register_channel(struct rt_serial_device *serial,
bool is_tx,
void (*done)(struct rt_serial_device *serial),
void (*abort)(struct rt_serial_device *serial),
void (*error)(struct rt_serial_device *serial))
{
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
if (is_tx) {
uart->tx_chn_ctx.serial = serial;
uart->tx_chn_ctx.tranfer_done = done;
uart->tx_chn_ctx.tranfer_abort = abort;
uart->tx_chn_ctx.tranfer_error = error;
} else {
uart->rx_chn_ctx.serial = serial;
uart->rx_chn_ctx.tranfer_done = done;
uart->rx_chn_ctx.tranfer_abort = abort;
uart->rx_chn_ctx.tranfer_error = error;
}
return RT_EOK;
}
#endif /* RT_SERIAL_USING_DMA */
#if defined(BSP_USING_UART0)
struct rt_serial_device serial0;
void uart0_isr(void)
{
hpm_uart_isr(&serial0);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART0,uart0_isr)
#endif
#if defined(BSP_USING_UART1)
struct rt_serial_device serial1;
void uart1_isr(void)
{
hpm_uart_isr(&serial1);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART1,uart1_isr)
#endif
#if defined(BSP_USING_UART2)
struct rt_serial_device serial2;
void uart2_isr(void)
{
hpm_uart_isr(&serial2);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART2,uart2_isr)
#endif
#if defined(BSP_USING_UART3)
struct rt_serial_device serial3;
void uart3_isr(void)
{
hpm_uart_isr(&serial3);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART3,uart3_isr)
#endif
#if defined(BSP_USING_UART4)
struct rt_serial_device serial4;
void uart4_isr(void)
{
hpm_uart_isr(&serial4);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART4,uart4_isr)
#endif
#if defined(BSP_USING_UART5)
struct rt_serial_device serial5;
void uart5_isr(void)
{
hpm_uart_isr(&serial5);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART5,uart5_isr)
#endif
#if defined(BSP_USING_UART6)
struct rt_serial_device serial6;
void uart6_isr(void)
{
hpm_uart_isr(&serial6);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART6,uart6_isr)
#endif
#if defined(BSP_USING_UART7)
struct rt_serial_device serial7;
void uart7_isr(void)
{
hpm_uart_isr(&serial7);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART7,uart7_isr)
#endif
#if defined(BSP_USING_UART8)
struct rt_serial_device serial8;
void uart8_isr(void)
{
hpm_uart_isr(&serial8);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART8,uart8_isr)
#endif
#if defined(BSP_USING_UART9)
struct rt_serial_device serial9;
void uart9_isr(void)
{
hpm_uart_isr(&serial9);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART9,uart9_isr)
#endif
#if defined(BSP_USING_UART10)
struct rt_serial_device serial10;
void uart10_isr(void)
{
hpm_uart_isr(&serial10);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART10,uart10_isr)
#endif
#if defined(BSP_USING_UART11)
struct rt_serial_device serial11;
void uart11_isr(void)
{
hpm_uart_isr(&serial11);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART11,uart11_isr)
#endif
#if defined(BSP_USING_UART12)
struct rt_serial_device serial12;
void uart12_isr(void)
{
hpm_uart_isr(&serial12);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART12,uart12_isr)
#endif
#if defined(BSP_USING_UART13)
struct rt_serial_device serial13;
void uart13_isr(void)
{
hpm_uart_isr(&serial13);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART13,uart13_isr)
#endif
#if defined(BSP_USING_UART14)
struct rt_serial_device serial14;
void uart14_isr(void)
{
hpm_uart_isr(&serial14);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART14,uart14_isr)
#endif
#if defined(BSP_USING_UART15)
struct rt_serial_device serial15;
void uart15_isr(void)
{
hpm_uart_isr(&serial15);
}
SDK_DECLARE_EXT_ISR_M(IRQn_UART15,uart15_isr)
#endif
static struct hpm_uart uarts[] =
{
#if defined(BSP_USING_UART0)
{
HPM_UART0,
IRQn_UART0,
&serial0,
"uart0",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART0_TX,
HPM_DMA_SRC_UART0_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART1)
{
HPM_UART1,
IRQn_UART1,
&serial1,
"uart1",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART1_TX,
HPM_DMA_SRC_UART1_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART2)
{
HPM_UART2,
IRQn_UART2,
&serial2,
"uart2",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART2_TX,
HPM_DMA_SRC_UART2_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART3)
{
HPM_UART3,
IRQn_UART3,
&serial3,
"uart3",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART3_TX,
HPM_DMA_SRC_UART3_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART4)
{
HPM_UART4,
IRQn_UART4,
&serial4,
"uart4",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART4_TX,
HPM_DMA_SRC_UART4_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART5)
{
HPM_UART5,
IRQn_UART5,
&serial5,
"uart5",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART5_TX,
HPM_DMA_SRC_UART5_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART6)
{
HPM_UART6,
IRQn_UART6,
&serial6,
"uart6",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART6_TX,
HPM_DMA_SRC_UART6_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART7)
{
HPM_UART7,
IRQn_UART7,
&serial7,
"uart7",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART7_TX,
HPM_DMA_SRC_UART7_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART8)
{
HPM_UART8,
IRQn_UART8,
&serial8,
"uart8",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART8_TX,
HPM_DMA_SRC_UART8_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART9)
{
HPM_UART9,
IRQn_UART9,
&serial9,
"uart9",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART9_TX,
HPM_DMA_SRC_UART9_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART10)
{
HPM_UART10,
IRQn_UART10,
&serial10,
"uart10",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART10_TX,
HPM_DMA_SRC_UART10_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART11)
{
HPM_UART11,
IRQn_UART11,
&serial11,
"uart11",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART11_TX,
HPM_DMA_SRC_UART11_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART12)
{
HPM_UART12,
IRQn_UART12,
&serial12,
"uart12",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART12_TX,
HPM_DMA_SRC_UART12_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART13)
{
HPM_UART13,
IRQn_UART13,
&serial13,
"uart13",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART13_TX,
HPM_DMA_SRC_UART13_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART14)
{
HPM_UART14,
IRQn_UART14,
&serial14,
"uart14",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART14_TX,
HPM_DMA_SRC_UART14_RX,
0,
#endif
},
#endif
#if defined(BSP_USING_UART15)
{
HPM_UART15,
IRQn_UART15,
&serial15,
"uart15",
#ifdef RT_SERIAL_USING_DMA
HPM_DMA_SRC_UART15_TX,
HPM_DMA_SRC_UART15_RX,
0,
#endif
},
#endif
};
enum
{
#if defined(BSP_USING_UART0)
HPM_UART0_INDEX,
#endif
#if defined(BSP_USING_UART1)
HPM_UART1_INDEX,
#endif
#if defined(BSP_USING_UART2)
HPM_UART2_INDEX,
#endif
#if defined(BSP_USING_UART3)
HPM_UART3_INDEX,
#endif
#if defined(BSP_USING_UART4)
HPM_UART4_INDEX,
#endif
#if defined(BSP_USING_UART5)
HPM_UART5_INDEX,
#endif
#if defined(BSP_USING_UART6)
HPM_UART6_INDEX,
#endif
#if defined(BSP_USING_UART7)
HPM_UART7_INDEX,
#endif
#if defined(BSP_USING_UART8)
HPM_UART8_INDEX,
#endif
#if defined(BSP_USING_UART9)
HPM_UART9_INDEX,
#endif
#if defined(BSP_USING_UART10)
HPM_UART10_INDEX,
#endif
#if defined(BSP_USING_UART11)
HPM_UART11_INDEX,
#endif
#if defined(BSP_USING_UART12)
HPM_UART12_INDEX,
#endif
#if defined(BSP_USING_UART13)
HPM_UART13_INDEX,
#endif
#if defined(BSP_USING_UART14)
HPM_UART14_INDEX,
#endif
#if defined(BSP_USING_UART15)
HPM_UART15_INDEX,
#endif
};
#if defined(RT_SERIAL_USING_DMA)
static void uart_dma_tc_callback(DMA_Type *base, uint32_t channel, void *user_data)
{
hpm_dma_channel_handle_t *dma_handle = (hpm_dma_channel_handle_t*)user_data;
if ((dma_handle->resource.base != base) || (dma_handle->resource.channel != channel))
{
return;
}
dma_handle->tranfer_done(dma_handle->serial);
}
static void uart_dma_abort_callback(DMA_Type *base, uint32_t channel, void *user_data)
{
hpm_dma_channel_handle_t *dma_handle = (hpm_dma_channel_handle_t*)user_data;
if ((dma_handle->resource.base != base) || (dma_handle->resource.channel != channel))
{
return;
}
dma_handle->tranfer_abort(dma_handle->serial);
}
static void uart_dma_error_callback(DMA_Type *base, uint32_t channel, void *user_data)
{
hpm_dma_channel_handle_t *dma_handle = (hpm_dma_channel_handle_t*)user_data;
if ((dma_handle->resource.base != base) || (dma_handle->resource.channel != channel))
{
return;
}
dma_handle->tranfer_error(dma_handle->serial);
}
static void uart_tx_done(struct rt_serial_device *serial)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
}
static void uart_rx_done(struct rt_serial_device *serial)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1) && defined(RT_SERIAL_USING_DMA)
uint32_t uart_recv_data_count = 0;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
uint32_t rx_idle_tmp_buffer_size = sizeof(uart->rx_idle_tmp_buffer);
uart_recv_data_count = rx_idle_tmp_buffer_size - dma_get_remaining_transfer_size(uart->rx_chn_ctx.resource.base, uart->rx_chn_ctx.resource.channel);
if (l1c_dc_is_enabled()) {
uint32_t aligned_start = HPM_L1C_CACHELINE_ALIGN_DOWN((uint32_t)uart->rx_idle_tmp_buffer);
uint32_t aligned_end = HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)uart->rx_idle_tmp_buffer + rx_idle_tmp_buffer_size);
uint32_t aligned_size = aligned_end - aligned_start;
l1c_dc_invalidate(aligned_start, aligned_size);
}
rt_ringbuffer_put(&(rx_fifo->rb), uart->rx_idle_tmp_buffer, uart_recv_data_count);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE);
#else
if (l1c_dc_is_enabled()) {
uint32_t aligned_start = HPM_L1C_CACHELINE_ALIGN_DOWN((uint32_t)rx_fifo->rb.buffer_ptr);
uint32_t aligned_end = HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)rx_fifo->rb.buffer_ptr + serial->config.rx_bufsz);
uint32_t aligned_size = aligned_end - aligned_start;
l1c_dc_invalidate(aligned_start, aligned_size);
}
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (serial->config.rx_bufsz << 8));
#endif
/* prepare for next read */
hpm_uart_receive_dma_next(serial);
}
#endif /* RT_SERIAL_USING_DMA */
/**
* @brief UART common interrupt process. This
*
* @param serial Serial device
*/
static void hpm_uart_isr(struct rt_serial_device *serial)
{
struct hpm_uart *uart;
rt_uint32_t stat, enabled_irq;
rt_uint8_t irq_id;
rt_uint8_t count = 0;
rt_uint8_t put_char = 0;
RT_ASSERT(serial != RT_NULL);
uart = (struct hpm_uart *)serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
stat = uart_get_status(uart->uart_base);
irq_id = uart_get_irq_id(uart->uart_base);
if (irq_id == uart_intr_id_rx_data_avail) {
while (uart_check_status(uart->uart_base, uart_stat_data_ready)) {
count++;
put_char = uart_read_byte(uart->uart_base);
rt_ringbuffer_putchar(&(rx_fifo->rb), put_char);
/*in order to ensure rx fifo there are remaining bytes*/
if (count > 12) {
break;
}
}
}
if (irq_id == uart_intr_id_rx_timeout) {
while ((uart_check_status(uart->uart_base, uart_stat_data_ready)) || (uart_check_status(uart->uart_base, uart_stat_overrun_error))) {
put_char= uart_read_byte(uart->uart_base);
rt_ringbuffer_putchar(&(rx_fifo->rb), put_char);
}
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
if ((irq_id & uart_intr_tx_slot_avail) && (stat & uart_stat_tx_slot_avail)) {
/* UART in mode Transmitter */
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_uint8_t put_char = 0;
uint32_t fifo_size = 0, ringbuffer_data_len = 0, tx_size = 0;
uart_disable_irq(uart->uart_base, uart_intr_tx_slot_avail);
fifo_size = uart_get_fifo_size(uart->uart_base);
ringbuffer_data_len = rt_ringbuffer_data_len(&tx_fifo->rb);
if (ringbuffer_data_len <= 0) {
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
} else {
tx_size = (ringbuffer_data_len > fifo_size) ? fifo_size : ringbuffer_data_len;
for (uint32_t i = 0; i < tx_size; i++) {
rt_ringbuffer_getchar(&tx_fifo->rb, &put_char);
uart_write_byte(uart->uart_base, put_char);
}
uart_enable_irq(uart->uart_base, uart_intr_tx_slot_avail);
}
}
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1) && defined(RT_SERIAL_USING_DMA)
if (uart_is_rxline_idle(uart->uart_base)) {
uart_rx_done(serial);
uart_clear_rxline_idle_flag(uart->uart_base);
uart_flush(uart->uart_base);
}
#endif
}
static rt_err_t hpm_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart_config_t uart_config;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
init_uart_pins(uart->uart_base);
uart_default_config(uart->uart_base, &uart_config);
uart_config.src_freq_in_hz = board_init_uart_clock(uart->uart_base);
uart_config.baudrate = cfg->baud_rate;
uart_config.num_of_stop_bits = cfg->stop_bits;
uart_config.parity = cfg->parity;
uart_config.rx_fifo_level = uart_rx_fifo_trg_gt_three_quarters;
#ifdef RT_SERIAL_USING_DMA
if (uart->dma_flags & (RT_DEVICE_FLAG_DMA_TX | RT_DEVICE_FLAG_DMA_RX)) {
uart_config.fifo_enable = true;
uart_config.dma_enable = true;
if (uart->dma_flags & RT_DEVICE_FLAG_DMA_TX) {
uart_config.tx_fifo_level = uart_tx_fifo_trg_not_full;
}
if (uart->dma_flags & RT_DEVICE_FLAG_DMA_RX) {
uart_config.rx_fifo_level = uart_rx_fifo_trg_not_empty;
}
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1)
uart_config.rxidle_config.detect_enable = true;
uart_config.rxidle_config.detect_irq_enable = true;
uart_config.rxidle_config.idle_cond = uart_rxline_idle_cond_rxline_logic_one;
uart_config.rxidle_config.threshold = 16U; /* 10bit */
#endif
}
#endif
uart_config.word_length = cfg->data_bits - DATA_BITS_5;
hpm_stat_t status = uart_init(uart->uart_base, &uart_config);
return (status != status_success) ? -RT_ERROR : RT_EOK;
}
#ifdef RT_SERIAL_USING_DMA
hpm_stat_t hpm_uart_dma_rx_init(struct hpm_uart *uart_ctx)
{
hpm_stat_t status = status_fail;
if (!uart_ctx->rx_resource_allocated)
{
status = dma_mgr_request_resource(&uart_ctx->rx_chn_ctx.resource);
if (status == status_success)
{
uart_ctx->dma_flags |= RT_DEVICE_FLAG_DMA_RX;
uart_ctx->rx_resource_allocated = true;
dma_mgr_install_chn_tc_callback(&uart_ctx->rx_chn_ctx.resource, uart_dma_tc_callback, &uart_ctx->rx_chn_ctx);
dma_mgr_install_chn_abort_callback(&uart_ctx->rx_chn_ctx.resource, uart_dma_abort_callback, &uart_ctx->rx_chn_ctx);
dma_mgr_install_chn_error_callback(&uart_ctx->rx_chn_ctx.resource, uart_dma_error_callback, &uart_ctx->rx_chn_ctx);
}
}
return status;
}
hpm_stat_t hpm_uart_dma_tx_init(struct hpm_uart *uart_ctx)
{
hpm_stat_t status = status_fail;
if (!uart_ctx->tx_resource_allocated)
{
status = dma_mgr_request_resource(&uart_ctx->tx_chn_ctx.resource);
if (status == status_success)
{
uart_ctx->dma_flags |= RT_DEVICE_FLAG_DMA_TX;
uart_ctx->tx_resource_allocated = true;
dma_mgr_install_chn_tc_callback(&uart_ctx->tx_chn_ctx.resource, uart_dma_tc_callback, &uart_ctx->tx_chn_ctx);
dma_mgr_install_chn_abort_callback(&uart_ctx->tx_chn_ctx.resource, uart_dma_abort_callback, &uart_ctx->tx_chn_ctx);
dma_mgr_install_chn_error_callback(&uart_ctx->tx_chn_ctx.resource, uart_dma_error_callback, &uart_ctx->tx_chn_ctx);
}
}
return status;
}
static int hpm_uart_dma_config(struct rt_serial_device *serial, void *arg)
{
rt_ubase_t ctrl_arg = (rt_ubase_t) arg;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
struct rt_serial_rx_fifo *rx_fifo;
dma_mgr_chn_conf_t chg_config;
dma_mgr_get_default_chn_config(&chg_config);
if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) {
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
chg_config.dst_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_INCREMENT;
chg_config.dst_mode = DMA_MGR_HANDSHAKE_MODE_NORMAL;
chg_config.dst_width = DMA_TRANSFER_WIDTH_BYTE;
chg_config.en_dmamux = true;
chg_config.dmamux_src = uart->rx_dma_mux;
chg_config.src_addr = (uint32_t)&(uart->uart_base->RBR);
chg_config.src_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_FIXED;
chg_config.src_mode = DMA_HANDSHAKE_MODE_HANDSHAKE;
chg_config.src_width = DMA_TRANSFER_WIDTH_BYTE;
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1)
chg_config.dst_addr = (uint32_t)uart->rx_idle_tmp_buffer;
chg_config.size_in_byte = sizeof(uart->rx_idle_tmp_buffer);
#else
chg_config.dst_addr = (uint32_t)rx_fifo->rb.buffer_ptr;
chg_config.size_in_byte = serial->config.rx_bufsz;
#endif
if (status_success != dma_mgr_setup_channel(&uart->rx_chn_ctx.resource, &chg_config)) {
return -RT_ERROR;
}
dma_mgr_enable_channel(&uart->rx_chn_ctx.resource);
dma_mgr_enable_chn_irq(&uart->rx_chn_ctx.resource, DMA_MGR_INTERRUPT_MASK_TC);
dma_mgr_enable_dma_irq_with_priority(&uart->rx_chn_ctx.resource, 1);
#if !defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) || (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 0)
hpm_uart_dma_register_channel(serial, false, uart_rx_done, RT_NULL, RT_NULL);
#else
intc_m_enable_irq_with_priority(uart->irq_num, 1);
#endif
} else if (ctrl_arg == RT_DEVICE_FLAG_DMA_TX) {
chg_config.src_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_INCREMENT;
chg_config.src_mode = DMA_MGR_HANDSHAKE_MODE_NORMAL;
chg_config.src_width = DMA_TRANSFER_WIDTH_BYTE;
chg_config.dst_addr = (uint32_t)&uart->uart_base->THR;
chg_config.dst_addr_ctrl = DMA_MGR_ADDRESS_CONTROL_FIXED;
chg_config.dst_mode = DMA_MGR_HANDSHAKE_MODE_HANDSHAKE;
chg_config.dst_width = DMA_TRANSFER_WIDTH_BYTE;
chg_config.en_dmamux = true;
chg_config.dmamux_src = uart->tx_dma_mux;
if (status_success != dma_mgr_setup_channel(&uart->tx_chn_ctx.resource, &chg_config)) {
return -RT_ERROR;
}
dma_mgr_enable_chn_irq(&uart->tx_chn_ctx.resource, DMA_MGR_INTERRUPT_MASK_TC);
dma_mgr_enable_dma_irq_with_priority(&uart->tx_chn_ctx.resource, 1);
}
return RT_EOK;
}
static void hpm_uart_receive_dma_next(struct rt_serial_device *serial)
{
uint32_t buf_addr;
uint32_t buf_size;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
#if defined(HPM_IP_FEATURE_UART_RX_IDLE_DETECT) && (HPM_IP_FEATURE_UART_RX_IDLE_DETECT == 1)
buf_addr = (uint32_t)uart->rx_idle_tmp_buffer;
buf_size = sizeof(uart->rx_idle_tmp_buffer);
#else
buf_addr = (uint32_t)rx_fifo->rb.buffer_ptr;
buf_size = serial->config.rx_bufsz;
#endif
dma_mgr_set_chn_dst_addr(&uart->rx_chn_ctx.resource, buf_addr);
dma_mgr_set_chn_transize(&uart->rx_chn_ctx.resource, buf_size);
dma_mgr_enable_channel(&uart->rx_chn_ctx.resource);
}
static void hpm_uart_transmit_dma(struct rt_serial_device *serial, uint8_t *src, uint32_t size)
{
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
dma_mgr_set_chn_src_addr(&uart->tx_chn_ctx.resource, (uint32_t)src);
dma_mgr_set_chn_transize(&uart->tx_chn_ctx.resource, size);
dma_mgr_enable_channel(&uart->tx_chn_ctx.resource);
}
#endif /* RT_SERIAL_USING_DMA */
static rt_err_t hpm_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
RT_ASSERT(serial != RT_NULL);
rt_ubase_t ctrl_arg = (rt_ubase_t) arg;
uint8_t *tmp_buffer = NULL;
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
struct rt_serial_tx_fifo *tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
if(ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
{
#ifdef RT_SERIAL_USING_DMA
if (uart->dma_flags & RT_DEVICE_FLAG_DMA_RX)
{
ctrl_arg = RT_DEVICE_FLAG_DMA_RX;
}
else
#endif
{
ctrl_arg = RT_DEVICE_FLAG_INT_RX;
}
}
else if(ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING))
{
#ifdef RT_SERIAL_USING_DMA
if (uart->dma_flags & RT_DEVICE_FLAG_DMA_TX)
{
ctrl_arg = RT_DEVICE_FLAG_DMA_TX;
}
else
#endif
{
ctrl_arg = RT_DEVICE_FLAG_INT_TX;
}
}
switch (cmd) {
case RT_DEVICE_CTRL_CLR_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) {
/* disable rx irq */
uart_disable_irq(uart->uart_base, uart_intr_rx_data_avail_or_timeout);
intc_m_disable_irq(uart->irq_num);
}
else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX) {
/* disable tx irq */
uart_disable_irq(uart->uart_base, uart_intr_tx_slot_avail);
intc_m_disable_irq(uart->irq_num);
}
#ifdef RT_SERIAL_USING_DMA
else if (ctrl_arg == RT_DEVICE_FLAG_DMA_TX) {
dma_mgr_disable_chn_irq(&uart->tx_chn_ctx.resource, DMA_INTERRUPT_MASK_ALL);
dma_abort_channel(uart->tx_chn_ctx.resource.base, uart->tx_chn_ctx.resource.channel);
} else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) {
dma_mgr_disable_chn_irq(&uart->rx_chn_ctx.resource, DMA_INTERRUPT_MASK_ALL);
dma_abort_channel(uart->rx_chn_ctx.resource.base, uart->rx_chn_ctx.resource.channel);
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) {
/* enable rx irq */
uart_enable_irq(uart->uart_base, uart_intr_rx_data_avail_or_timeout);
intc_m_enable_irq_with_priority(uart->irq_num, 2);
} else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX) {
/* enable tx irq */
uart_enable_irq(uart->uart_base, uart_intr_tx_slot_avail);
intc_m_enable_irq_with_priority(uart->irq_num, 1);
}
break;
case RT_DEVICE_CTRL_CONFIG:
#ifdef RT_SERIAL_USING_DMA
if ((ctrl_arg == RT_DEVICE_FLAG_DMA_RX) || (ctrl_arg == RT_DEVICE_FLAG_INT_RX)) {
if ((rx_fifo) && (((rt_uint32_t)rx_fifo->rb.buffer_ptr % HPM_L1C_CACHELINE_SIZE) || (rx_fifo->rb.buffer_size % HPM_L1C_CACHELINE_SIZE))) {
rt_free(rx_fifo);
rx_fifo = RT_NULL;
rx_fifo = (struct rt_serial_rx_fifo *) rt_malloc(sizeof(struct rt_serial_rx_fifo));
RT_ASSERT(rx_fifo != RT_NULL);
tmp_buffer = rt_malloc(serial->config.rx_bufsz + HPM_L1C_CACHELINE_SIZE);
RT_ASSERT(tmp_buffer != RT_NULL);
tmp_buffer += (HPM_L1C_CACHELINE_SIZE - ((rt_ubase_t) tmp_buffer % HPM_L1C_CACHELINE_SIZE));
rt_ringbuffer_init(&rx_fifo->rb, tmp_buffer, serial->config.rx_bufsz);
rt_ringbuffer_reset(&rx_fifo->rb);
serial->serial_rx = rx_fifo;
}
}
if ((ctrl_arg == RT_DEVICE_FLAG_DMA_TX) || (ctrl_arg == RT_DEVICE_FLAG_INT_TX)) {
if ((tx_fifo) && (((rt_uint32_t)tx_fifo->rb.buffer_ptr % HPM_L1C_CACHELINE_SIZE) || (tx_fifo->rb.buffer_size % HPM_L1C_CACHELINE_SIZE))) {
rt_free(tx_fifo);
tx_fifo = RT_NULL;
tx_fifo = (struct rt_serial_tx_fifo *) rt_malloc(sizeof(struct rt_serial_tx_fifo));
RT_ASSERT(tx_fifo != RT_NULL);
tmp_buffer = rt_malloc(serial->config.tx_bufsz + HPM_L1C_CACHELINE_SIZE);
RT_ASSERT(tmp_buffer != RT_NULL);
tmp_buffer+= (HPM_L1C_CACHELINE_SIZE - ((rt_ubase_t) tmp_buffer % HPM_L1C_CACHELINE_SIZE));
rt_ringbuffer_init(&tx_fifo->rb, tmp_buffer, serial->config.tx_bufsz);
rt_ringbuffer_reset(&tx_fifo->rb);
tx_fifo->activated = RT_FALSE;
tx_fifo->put_size = 0;
serial->serial_tx = tx_fifo;
}
}
if (ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX)) {
hpm_uart_dma_config(serial, (void *)ctrl_arg);
} else
#endif
{
hpm_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg);
}
break;
case RT_DEVICE_CHECK_OPTMODE:
#ifdef RT_SERIAL_USING_DMA
if ((ctrl_arg & RT_DEVICE_FLAG_DMA_TX)) {
return RT_SERIAL_TX_BLOCKING_NO_BUFFER;
} else
#endif
{
return RT_SERIAL_TX_BLOCKING_BUFFER;
}
}
return RT_EOK;
}
static int hpm_uart_putc(struct rt_serial_device *serial, char ch)
{
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
uart_send_byte(uart->uart_base, ch);
uart_flush(uart->uart_base);
return ch;
}
static int hpm_uart_getc(struct rt_serial_device *serial)
{
int result = -1;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
if (uart_check_status(uart->uart_base, uart_stat_data_ready)) {
uart_receive_byte(uart->uart_base, (uint8_t*)&result);
}
return result;
}
static rt_ssize_t hpm_uart_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
rt_uint32_t tx_flag)
{
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(buf != RT_NULL);
RT_ASSERT(size);
uint32_t fifo_size = 0, tx_size = 0;
uint32_t ringbuffer_data_len = 0;
struct hpm_uart *uart = (struct hpm_uart *)serial->parent.user_data;
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
uint8_t ch = 0;
RT_ASSERT(tx_fifo != RT_NULL);
#ifdef RT_SERIAL_USING_DMA
if (uart->dma_flags & RT_DEVICE_FLAG_DMA_TX) {
hpm_uart_dma_register_channel(serial, true, uart_tx_done, RT_NULL, RT_NULL);
intc_m_enable_irq(uart->tx_chn_ctx.resource.irq_num);
if (l1c_dc_is_enabled()) {
uint32_t aligned_start = HPM_L1C_CACHELINE_ALIGN_DOWN((uint32_t)buf);
uint32_t aligned_end = HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)buf + size);
uint32_t aligned_size = aligned_end - aligned_start;
l1c_dc_flush(aligned_start, aligned_size);
}
hpm_uart_transmit_dma(serial, buf, size);
return size;
} else {
#else
{
#endif
if (size > 0) {
if (uart_check_status(uart->uart_base, uart_stat_tx_slot_avail)) {
uart_disable_irq(uart->uart_base, uart_intr_tx_slot_avail);
fifo_size = uart_get_fifo_size(uart->uart_base);
ringbuffer_data_len = rt_ringbuffer_data_len(&tx_fifo->rb);
tx_size = (ringbuffer_data_len > fifo_size) ? fifo_size : ringbuffer_data_len;
for (uint32_t i = 0; i < tx_size; i++) {
rt_ringbuffer_getchar(&tx_fifo->rb, &ch);
uart_write_byte(uart->uart_base, ch);
}
uart_enable_irq(uart->uart_base, uart_intr_tx_slot_avail);
}
}
}
return size;
}
static const struct rt_uart_ops hpm_uart_ops = {
hpm_uart_configure,
hpm_uart_control,
hpm_uart_putc,
hpm_uart_getc,
hpm_uart_transmit,
};
static int hpm_uart_config(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
hpm_stat_t status = status_success;
#ifdef BSP_USING_UART0
uarts[HPM_UART0_INDEX].serial->config = config;
uarts[HPM_UART0_INDEX].serial->config.rx_bufsz = BSP_UART0_RX_BUFSIZE;
uarts[HPM_UART0_INDEX].serial->config.tx_bufsz = BSP_UART0_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART0_INDEX].dma_flags = 0;
#ifdef BSP_UART0_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART0_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART0_RX_USING_DMA
#ifdef BSP_UART0_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART0_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART0_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART0
#ifdef BSP_USING_UART1
uarts[HPM_UART1_INDEX].serial->config = config;
uarts[HPM_UART1_INDEX].serial->config.rx_bufsz = BSP_UART1_RX_BUFSIZE;
uarts[HPM_UART1_INDEX].serial->config.tx_bufsz = BSP_UART1_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART1_INDEX].dma_flags = 0;
#ifdef BSP_UART1_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART1_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART1_RX_USING_DMA
#ifdef BSP_UART1_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART1_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART1_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART1
#ifdef BSP_USING_UART2
uarts[HPM_UART2_INDEX].serial->config = config;
uarts[HPM_UART2_INDEX].serial->config.rx_bufsz = BSP_UART2_RX_BUFSIZE;
uarts[HPM_UART2_INDEX].serial->config.tx_bufsz = BSP_UART2_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART2_INDEX].dma_flags = 0;
#ifdef BSP_UART2_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART2_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART2_RX_USING_DMA
#ifdef BSP_UART2_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART2_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART2_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART2
#ifdef BSP_USING_UART3
uarts[HPM_UART3_INDEX].serial->config = config;
uarts[HPM_UART3_INDEX].serial->config.rx_bufsz = BSP_UART3_RX_BUFSIZE;
uarts[HPM_UART3_INDEX].serial->config.tx_bufsz = BSP_UART3_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART3_INDEX].dma_flags = 0;
#ifdef BSP_UART3_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART3_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART3_RX_USING_DMA
#ifdef BSP_UART3_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART3_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART3_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART3
#ifdef BSP_USING_UART4
uarts[HPM_UART4_INDEX].serial->config = config;
uarts[HPM_UART4_INDEX].serial->config.rx_bufsz = BSP_UART4_RX_BUFSIZE;
uarts[HPM_UART4_INDEX].serial->config.tx_bufsz = BSP_UART4_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART4_INDEX].dma_flags = 0;
#ifdef BSP_UART4_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART4_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART4_RX_USING_DMA
#ifdef BSP_UART4_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART4_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART4_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART4
#ifdef BSP_USING_UART5
uarts[HPM_UART5_INDEX].serial->config = config;
uarts[HPM_UART5_INDEX].serial->config.rx_bufsz = BSP_UART5_RX_BUFSIZE;
uarts[HPM_UART5_INDEX].serial->config.tx_bufsz = BSP_UART5_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART5_INDEX].dma_flags = 0;
#ifdef BSP_UART5_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART5_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART5_RX_USING_DMA
#ifdef BSP_UART5_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART5_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART5_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART5
#ifdef BSP_USING_UART6
uarts[HPM_UART6_INDEX].serial->config = config;
uarts[HPM_UART6_INDEX].serial->config.rx_bufsz = BSP_UART6_RX_BUFSIZE;
uarts[HPM_UART6_INDEX].serial->config.tx_bufsz = BSP_UART6_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART6_INDEX].dma_flags = 0;
#ifdef BSP_UART6_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART6_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART6_RX_USING_DMA
#ifdef BSP_UART6_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART6_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART6_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART6
#ifdef BSP_USING_UART7
uarts[HPM_UART7_INDEX].serial->config = config;
uarts[HPM_UART7_INDEX].serial->config.rx_bufsz = BSP_UART7_RX_BUFSIZE;
uarts[HPM_UART7_INDEX].serial->config.tx_bufsz = BSP_UART7_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART7_INDEX].dma_flags = 0;
#ifdef BSP_UART7_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART7_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART7_RX_USING_DMA
#ifdef BSP_UART7_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART7_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART7_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART7
#ifdef BSP_USING_UART8
uarts[HPM_UART8_INDEX].serial->config = config;
uarts[HPM_UART8_INDEX].serial->config.rx_bufsz = BSP_UART8_RX_BUFSIZE;
uarts[HPM_UART8_INDEX].serial->config.tx_bufsz = BSP_UART8_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART8_INDEX].dma_flags = 0;
#ifdef BSP_UART8_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART8_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART8_RX_USING_DMA
#ifdef BSP_UART8_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART8_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART8_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART8
#ifdef BSP_USING_UART9
uarts[HPM_UART9_INDEX].serial->config = config;
uarts[HPM_UART9_INDEX].serial->config.rx_bufsz = BSP_UART9_RX_BUFSIZE;
uarts[HPM_UART9_INDEX].serial->config.tx_bufsz = BSP_UART9_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART9_INDEX].dma_flags = 0;
#ifdef BSP_UART9_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART9_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART9_RX_USING_DMA
#ifdef BSP_UART9_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART9_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART9_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART9
#ifdef BSP_USING_UART10
uarts[HPM_UART10_INDEX].serial->config = config;
uarts[HPM_UART10_INDEX].serial->config.rx_bufsz = BSP_UART10_RX_BUFSIZE;
uarts[HPM_UART10_INDEX].serial->config.tx_bufsz = BSP_UART10_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART10_INDEX].dma_flags = 0;
#ifdef BSP_UART10_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART10_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART10_RX_USING_DMA
#ifdef BSP_UART10_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART10_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART10_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART10
#ifdef BSP_USING_UART11
uarts[HPM_UART11_INDEX].serial->config = config;
uarts[HPM_UART11_INDEX].serial->config.rx_bufsz = BSP_UART11_RX_BUFSIZE;
uarts[HPM_UART11_INDEX].serial->config.tx_bufsz = BSP_UART11_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART11_INDEX].dma_flags = 0;
#ifdef BSP_UART11_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART11_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART11_RX_USING_DMA
#ifdef BSP_UART11_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART11_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART11_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART11
#ifdef BSP_USING_UART12
uarts[HPM_UART12_INDEX].serial->config = config;
uarts[HPM_UART12_INDEX].serial->config.rx_bufsz = BSP_UART12_RX_BUFSIZE;
uarts[HPM_UART12_INDEX].serial->config.tx_bufsz = BSP_UART12_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART12_INDEX].dma_flags = 0;
#ifdef BSP_UART12_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART12_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART12_RX_USING_DMA
#ifdef BSP_UART12_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART12_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART12_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART12
#ifdef BSP_USING_UART13
uarts[HPM_UART13_INDEX].serial->config = config;
uarts[HPM_UART13_INDEX].serial->config.rx_bufsz = BSP_UART13_RX_BUFSIZE;
uarts[HPM_UART13_INDEX].serial->config.tx_bufsz = BSP_UART13_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART13_INDEX].dma_flags = 0;
#ifdef BSP_UART13_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART13_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART13_RX_USING_DMA
#ifdef BSP_UART13_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART13_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART13_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART13
#ifdef BSP_USING_UART14
uarts[HPM_UART14_INDEX].serial->config = config;
uarts[HPM_UART14_INDEX].serial->config.rx_bufsz = BSP_UART14_RX_BUFSIZE;
uarts[HPM_UART14_INDEX].serial->config.tx_bufsz = BSP_UART14_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART14_INDEX].dma_flags = 0;
#ifdef BSP_UART14_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART14_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART14_RX_USING_DMA
#ifdef BSP_UART14_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART14_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART14_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART14
#ifdef BSP_USING_UART15
uarts[HPM_UART15_INDEX].serial->config = config;
uarts[HPM_UART15_INDEX].serial->config.rx_bufsz = BSP_UART15_RX_BUFSIZE;
uarts[HPM_UART15_INDEX].serial->config.tx_bufsz = BSP_UART15_TX_BUFSIZE;
#ifdef RT_SERIAL_USING_DMA
uarts[HPM_UART15_INDEX].dma_flags = 0;
#ifdef BSP_UART15_RX_USING_DMA
status = hpm_uart_dma_rx_init(&uarts[HPM_UART15_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART15_RX_USING_DMA
#ifdef BSP_UART15_TX_USING_DMA
status = hpm_uart_dma_tx_init(&uarts[HPM_UART15_INDEX]);
if (status != status_success)
{
return -RT_ERROR;
}
#endif //BSP_UART15_TX_USING_DMA
#endif // RT_SERIAL_USING_DMA
#endif //BSP_USING_UART15
return RT_EOK;
}
int rt_hw_uart_init(void)
{
/* Added bypass logic here since the rt_hw_uart_init function will be initialized twice, the 2nd initialization should be bypassed */
static bool initialized;
rt_err_t err = RT_EOK;
if (initialized)
{
return err;
}
else
{
initialized = true;
}
if (RT_EOK != hpm_uart_config()) {
return -RT_ERROR;
}
for (uint32_t i = 0; i < sizeof(uarts) / sizeof(uarts[0]); i++) {
uarts[i].serial->ops = &hpm_uart_ops;
/* register UART device */
err = rt_hw_serial_register(uarts[i].serial,
uarts[i].device_name,
RT_DEVICE_FLAG_RDWR,
(void*)&uarts[i]);
}
return err;
}
INIT_BOARD_EXPORT(rt_hw_uart_init);
#endif /* RT_USING_SERIAL */