rt-thread-official/libcpu/aarch64/common/cpu.c

378 lines
9.3 KiB
C
Raw Normal View History

2020-01-10 10:38:21 +08:00
/*
* Copyright (c) 2006-2019, RT-Thread Development Team
2020-01-10 10:38:21 +08:00
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-09-15 Bernard first version
* 2019-07-28 zdzn add smp support
*/
#include <rthw.h>
#include <rtthread.h>
#include <board.h>
#include "cp15.h"
#define DBG_TAG "libcpu.aarch64.cpu"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <string.h>
#include "cpu.h"
#include "psci_api.h"
void (*system_off)(void);
2022-01-07 13:49:06 +08:00
#ifdef RT_USING_SMP
#ifdef RT_USING_FDT
#include "dtb_node.h"
struct dtb_node *_cpu_node[RT_CPUS_NR];
#endif /* RT_USING_FDT */
#define MPIDR_AFF_MASK 0x000000FF00FFFFFFul
#define REPORT_ERR(retval) LOG_E("got error code %d in %s(), %s:%d", (retval), __func__, __FILE__, __LINE__)
#define CHECK_RETVAL(retval) if (retval) {REPORT_ERR(retval);}
/**
* cpu_ops_tbl contains cpu_ops_t for each cpu kernel observed,
* given cpu logical id 'i', its cpu_ops_t is 'cpu_ops_tbl[i]'
*/
struct cpu_ops_t *cpu_ops_tbl[RT_CPUS_NR];
#ifdef RT_USING_SMART
// _id_to_mpidr is a table translate logical id to mpid, which is a 64-bit value
rt_uint64_t rt_cpu_mpidr_early[RT_CPUS_NR] rt_weak = {[0 ... RT_CPUS_NR - 1] = ID_ERROR};
#else
2022-01-07 13:49:06 +08:00
/* The more common mpidr_el1 table, redefine it in BSP if it is in other cases */
rt_weak rt_uint64_t rt_cpu_mpidr_early[] =
2022-01-07 13:49:06 +08:00
{
[0] = 0x80000000,
[1] = 0x80000001,
[2] = 0x80000002,
[3] = 0x80000003,
[4] = 0x80000004,
[5] = 0x80000005,
[6] = 0x80000006,
[7] = 0x80000007,
[RT_CPUS_NR] = 0
};
#endif /* RT_USING_SMART */
2020-01-10 10:38:21 +08:00
void rt_hw_spin_lock_init(rt_hw_spinlock_t *lock)
{
lock->slock = 0;
}
#define TICKET_SHIFT 16
2020-01-10 10:38:21 +08:00
void rt_hw_spin_lock(rt_hw_spinlock_t *lock)
{
2022-01-07 13:49:06 +08:00
unsigned int tmp;
struct __arch_tickets lockval, newval;
2020-01-10 10:38:21 +08:00
asm volatile(
/* Atomically increment the next ticket. */
2022-01-07 13:49:06 +08:00
" prfm pstl1strm, %3\n"
"1: ldaxr %w0, %3\n"
" add %w1, %w0, %w5\n"
" stxr %w2, %w1, %3\n"
" cbnz %w2, 1b\n"
/* Did we get the lock? */
" eor %w1, %w0, %w0, ror #16\n"
" cbz %w1, 3f\n"
2022-01-07 13:49:06 +08:00
/*
* No: spin on the owner. Send a local event to avoid missing an
2022-01-07 13:49:06 +08:00
* unlock before the exclusive load.
*/
" sevl\n"
"2: wfe\n"
" ldaxrh %w2, %4\n"
" eor %w1, %w2, %w0, lsr #16\n"
2022-01-07 13:49:06 +08:00
" cbnz %w1, 2b\n"
/* We got the lock. Critical section starts here. */
2022-01-07 13:49:06 +08:00
"3:"
: "=&r"(lockval), "=&r"(newval), "=&r"(tmp), "+Q"(*lock)
: "Q"(lock->tickets.owner), "I"(1 << TICKET_SHIFT)
2022-01-07 13:49:06 +08:00
: "memory");
rt_hw_dmb();
2020-01-10 10:38:21 +08:00
}
void rt_hw_spin_unlock(rt_hw_spinlock_t *lock)
{
rt_hw_dmb();
asm volatile(
" stlrh %w1, %0\n"
: "=Q"(lock->tickets.owner)
: "r"(lock->tickets.owner + 1)
2022-01-07 13:49:06 +08:00
: "memory");
2020-01-10 10:38:21 +08:00
}
static int _cpus_init_data_hardcoded(int num_cpus, rt_uint64_t *cpu_hw_ids, struct cpu_ops_t *cpu_ops[])
{
// load in cpu_hw_ids in cpuid_to_hwid,
// cpu_ops to cpu_ops_tbl
if (num_cpus > RT_CPUS_NR)
{
LOG_W("num_cpus (%d) greater than RT_CPUS_NR (%d)\n", num_cpus, RT_CPUS_NR);
num_cpus = RT_CPUS_NR;
}
for (int i = 0; i < num_cpus; i++)
{
set_hwid(i, cpu_hw_ids[i]);
cpu_ops_tbl[i] = cpu_ops[i];
}
return 0;
}
#ifdef RT_USING_FDT
/** read ('size' * 4) bytes number from start, big-endian format */
static rt_uint64_t _read_be_number(void *start, int size)
{
rt_uint64_t buf = 0;
for (; size > 0; size--)
{
buf = (buf << 32) | fdt32_to_cpu(*(uint32_t *)start);
start = (uint32_t *)start + 1;
}
return buf;
}
/** check device-type of the node, */
static bool _node_is_cpu(struct dtb_node *node)
{
char *device_type = dtb_node_get_dtb_node_property_value(node, "device_type", NULL);
if (device_type)
{
return !strcmp(device_type, "cpu");
}
return false;
}
static int _read_and_set_hwid(struct dtb_node *cpu, int *id_pool, int *pcpuid)
{
// size/address_cells is number of elements in reg array
int size;
static int address_cells, size_cells;
if (!address_cells && !size_cells)
dtb_node_get_dtb_node_cells(cpu, &address_cells, &size_cells);
void *id_start = dtb_node_get_dtb_node_property_value(cpu, "reg", &size);
rt_uint64_t mpid = _read_be_number(id_start, address_cells);
*pcpuid = *id_pool;
*id_pool = *id_pool + 1;
set_hwid(*pcpuid, mpid);
LOG_I("Using MPID 0x%lx as cpu %d", mpid, *pcpuid);
// setting _cpu_node for cpu_init use
_cpu_node[*pcpuid] = cpu;
return 0;
}
static int _read_and_set_cpuops(struct dtb_node *cpu, int cpuid)
{
char *method = dtb_node_get_dtb_node_property_value(cpu, "enable-method", NULL);
if (!method)
{
LOG_E("Cannot read method from cpu node");
return -1;
}
struct cpu_ops_t *cpu_ops;
if (!strcmp(method, cpu_ops_psci.method))
{
cpu_ops = &cpu_ops_psci;
}
else if (!strcmp(method, cpu_ops_spin_tbl.method))
{
cpu_ops = &cpu_ops_spin_tbl;
}
else
{
cpu_ops = RT_NULL;
LOG_E("Not supported cpu_ops: %s", method);
}
cpu_ops_tbl[cpuid] = cpu_ops;
LOG_D("Using boot method [%s] for cpu %d", cpu_ops->method, cpuid);
return 0;
}
static int _cpus_init_data_fdt()
{
// cpuid_to_hwid and cpu_ops_tbl with fdt
void *root = get_dtb_node_head();
int id_pool = 0;
int cpuid;
struct dtb_node *cpus = dtb_node_get_dtb_node_by_path(root, "/cpus");
// for each cpu node (device-type is cpu), read its mpid and set its cpuid_to_hwid
for_each_node_child(cpus)
{
if (!_node_is_cpu(cpus))
{
continue;
}
if (id_pool > RT_CPUS_NR)
{
LOG_W("Reading more cpus from FDT than RT_CPUS_NR"
"\n Parsing will not continue and only %d cpus will be used.", RT_CPUS_NR);
break;
}
_read_and_set_hwid(cpus, &id_pool, &cpuid);
_read_and_set_cpuops(cpus, cpuid);
}
return 0;
}
#endif /* RT_USING_FDT */
/** init cpu with hardcoded infomation or parsing from FDT */
static int _cpus_init(int num_cpus, rt_uint64_t *cpu_hw_ids, struct cpu_ops_t *cpu_ops[])
{
int retval;
// first setup cpu_ops_tbl and cpuid_to_hwid
if (num_cpus > 0)
retval = _cpus_init_data_hardcoded(num_cpus, cpu_hw_ids, cpu_ops);
else
{
retval = -1;
#ifdef RT_USING_FDT
retval = _cpus_init_data_fdt();
#endif
}
if (retval)
return retval;
// using cpuid_to_hwid and cpu_ops_tbl to call method_init and cpu_init
// assuming that cpuid 0 has already init
for (int i = 1; i < RT_CPUS_NR; i++)
{
if (cpuid_to_hwid(i) == ID_ERROR)
{
LOG_E("Failed to find hardware id of CPU %d", i);
continue;
}
if (cpu_ops_tbl[i] && cpu_ops_tbl[i]->cpu_init)
{
retval = cpu_ops_tbl[i]->cpu_init(i);
CHECK_RETVAL(retval);
}
else
{
LOG_E("Failed to find cpu_init for cpu %d with cpu_ops[%p], cpu_ops->cpu_init[%p]"
, cpuid_to_hwid(i), cpu_ops_tbl[i], cpu_ops_tbl[i] ? cpu_ops_tbl[i]->cpu_init : NULL);
}
}
return 0;
}
static void _boot_secondary(void)
{
for (int i = 1; i < RT_CPUS_NR; i++)
{
int retval = -0xbad0; // mark no support operation
if (cpu_ops_tbl[i] && cpu_ops_tbl[i]->cpu_boot)
retval = cpu_ops_tbl[i]->cpu_boot(i);
if (retval)
{
if (retval == -0xbad0)
LOG_E("No cpu_ops was probed for CPU %d. Try to configure it or use fdt", i);
else
LOG_E("Failed to boot secondary CPU %d, error code %d", i, retval);
} else {
LOG_I("Secondary CPU %d booted", i);
}
}
}
rt_weak void rt_hw_secondary_cpu_up(void)
{
_boot_secondary();
}
/**
* @brief boot cpu with hardcoded data
*
* @param num_cpus number of cpus
* @param cpu_hw_ids each element represents a hwid of cpu[i]
* @param cpu_ops each element represents a pointer to cpu_ops of cpu[i]
* @return int 0 on success,
*/
int rt_hw_cpu_boot_secondary(int num_cpus, rt_uint64_t *cpu_hw_ids, struct cpu_ops_t *cpu_ops[])
{
int retval = 0;
if (num_cpus < 1 || !cpu_hw_ids || !cpu_ops)
return -1;
retval = _cpus_init(num_cpus, cpu_hw_ids, cpu_ops);
CHECK_RETVAL(retval);
return retval;
}
#define CPU_INIT_USING_FDT 0,0,0
/**
* @brief Initialize cpu infomation from fdt
*
* @return int
*/
int rt_hw_cpu_init()
{
#ifdef RT_USING_FDT
return _cpus_init(CPU_INIT_USING_FDT);
#else
LOG_E("CPU init failed since RT_USING_FDT was not defined");
return -0xa; /* no fdt support */
#endif /* RT_USING_FDT */
}
rt_weak void rt_hw_secondary_cpu_idle_exec(void)
{
asm volatile("wfe" ::
: "memory", "cc");
}
2020-01-10 10:38:21 +08:00
#endif /*RT_USING_SMP*/
/**
* @addtogroup ARM CPU
*/
/*@{*/
const char *rt_hw_cpu_arch(void)
{
return "aarch64";
}
2020-01-10 10:38:21 +08:00
/** shutdown CPU */
rt_weak void rt_hw_cpu_shutdown()
2020-01-10 10:38:21 +08:00
{
rt_uint32_t level;
2020-01-10 10:38:21 +08:00
rt_kprintf("shutdown...\n");
if (system_off)
system_off();
LOG_E("system shutdown failed");
2020-01-10 10:38:21 +08:00
level = rt_hw_interrupt_disable();
while (level)
{
RT_ASSERT(0);
}
}
MSH_CMD_EXPORT_ALIAS(rt_hw_cpu_shutdown, shutdown, shutdown machine);
2020-01-10 10:38:21 +08:00
/*@}*/