rt-thread-official/bsp/lpc178x/drivers/emac.c

546 lines
13 KiB
C
Raw Normal View History

#include "LPC177x_8x.h"
#include "lpc177x_8x_pinsel.h"
#include "emac.h"
#include <rtthread.h>
#include "lwipopts.h"
#include <netif/ethernetif.h>
#define EMAC_PHY_AUTO 0
#define EMAC_PHY_10MBIT 1
#define EMAC_PHY_100MBIT 2
#define MAX_ADDR_LEN 6
struct lpc17xx_emac
{
/* inherit from ethernet device */
struct eth_device parent;
rt_uint8_t phy_mode;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct lpc17xx_emac lpc17xx_emac_device;
static struct rt_semaphore sem_lock;
static struct rt_event tx_event;
/* Local Function Prototypes */
static void write_PHY (rt_uint32_t PhyReg, rt_uint32_t Value);
static rt_uint16_t read_PHY (rt_uint8_t PhyReg) ;
void ENET_IRQHandler(void)
{
rt_uint32_t status;
/* enter interrupt */
rt_interrupt_enter();
status = LPC_EMAC->IntStatus;
if (status & INT_RX_DONE)
{
/* Disable EMAC RxDone interrupts. */
LPC_EMAC->IntEnable = INT_TX_DONE;
/* a frame has been received */
eth_device_ready(&(lpc17xx_emac_device.parent));
}
else if (status & INT_TX_DONE)
{
/* set event */
rt_event_send(&tx_event, 0x01);
}
if (status & INT_RX_OVERRUN)
{
rt_kprintf("rx overrun\n");
}
if (status & INT_TX_UNDERRUN)
{
rt_kprintf("tx underrun\n");
}
/* Clear the interrupt. */
LPC_EMAC->IntClear = status;
/* leave interrupt */
rt_interrupt_leave();
}
/* phy write */
static void write_PHY (rt_uint32_t PhyReg, rt_uint32_t Value)
{
unsigned int tout;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MWTD = Value;
/* Wait utill operation completed */
tout = 0;
for (tout = 0; tout < MII_WR_TOUT; tout++)
{
if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
{
break;
}
}
}
/* phy read */
static rt_uint16_t read_PHY (rt_uint8_t PhyReg)
{
rt_uint32_t tout;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MCMD = MCMD_READ;
/* Wait until operation completed */
tout = 0;
for (tout = 0; tout < MII_RD_TOUT; tout++)
{
if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
{
break;
}
}
LPC_EMAC->MCMD = 0;
return (LPC_EMAC->MRDD);
}
/* init rx descriptor */
rt_inline void rx_descr_init (void)
{
rt_uint32_t i;
for (i = 0; i < NUM_RX_FRAG; i++)
{
RX_DESC_PACKET(i) = RX_BUF(i);
RX_DESC_CTRL(i) = RCTRL_INT | (ETH_FRAG_SIZE-1);
RX_STAT_INFO(i) = 0;
RX_STAT_HASHCRC(i) = 0;
}
/* Set EMAC Receive Descriptor Registers. */
LPC_EMAC->RxDescriptor = RX_DESC_BASE;
LPC_EMAC->RxStatus = RX_STAT_BASE;
LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG-1;
/* Rx Descriptors Point to 0 */
LPC_EMAC->RxConsumeIndex = 0;
}
/* init tx descriptor */
rt_inline void tx_descr_init (void)
{
rt_uint32_t i;
for (i = 0; i < NUM_TX_FRAG; i++)
{
TX_DESC_PACKET(i) = TX_BUF(i);
TX_DESC_CTRL(i) = (1ul<<31) | (1ul<<30) | (1ul<<29) | (1ul<<28) | (1ul<<26) | (ETH_FRAG_SIZE-1);
TX_STAT_INFO(i) = 0;
}
/* Set EMAC Transmit Descriptor Registers. */
LPC_EMAC->TxDescriptor = TX_DESC_BASE;
LPC_EMAC->TxStatus = TX_STAT_BASE;
LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG-1;
/* Tx Descriptors Point to 0 */
LPC_EMAC->TxProduceIndex = 0;
}
/*
TX_EN P1_4
TXD0 P1_0
TXD1 P1_1
RXD0 P1_9
RXD1 P1_10
RX_ER P1_14
CRS_DV P1_8
MDC P1_16
MDIO P1_17
PHY_RESET P3_19
REF_CLK P1_15
*/
static rt_err_t lpc17xx_emac_init(rt_device_t dev)
{
/* Initialize the EMAC ethernet controller. */
rt_uint32_t regv, tout;
/* Power Up the EMAC controller. */
LPC_SC->PCONP |= (1UL<<30);
/* config RESET */
PINSEL_ConfigPin(3, 19, 0);
PINSEL_SetPinMode(3, 19, IOCON_MODE_PLAIN);
LPC_GPIO3->DIR |= 1<<19;
LPC_GPIO3->CLR = 1<<19;
/* Enable P1 Ethernet Pins. */
PINSEL_ConfigPin(1, 0, 1); /**< P1_0 ENET_TXD0 */
PINSEL_ConfigPin(1, 1, 1); /**< P1_1 ENET_TXD1 */
PINSEL_ConfigPin(1, 4, 1); /**< P1_4 ENET_TX_EN */
PINSEL_ConfigPin(1, 8, 1); /**< P1_8 ENET_CRS_DV */
PINSEL_ConfigPin(1, 9, 1); /**< P1_9 ENET_RXD0 */
PINSEL_ConfigPin(1, 10, 1); /**< P1_10 ENET_RXD1 */
PINSEL_ConfigPin(1, 14, 1); /**< P1_14 ENET_RX_ER */
PINSEL_ConfigPin(1, 15, 1); /**< P1_15 ENET_REF_CLK */
PINSEL_ConfigPin(1, 16, 1); /**< P1_16 ENET_MDC */
PINSEL_ConfigPin(1, 17, 1); /**< P1_17 ENET_MDIO */
LPC_GPIO3->SET = 1<<19;
/* Reset all EMAC internal modules. */
LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX |
MAC1_SIM_RES | MAC1_SOFT_RES;
LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES;
/* A short delay after reset. */
for (tout = 100; tout; tout--);
/* Initialize MAC control registers. */
LPC_EMAC->MAC1 = MAC1_PASS_ALL;
LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
LPC_EMAC->MAXF = ETH_MAX_FLEN;
LPC_EMAC->CLRT = CLRT_DEF;
LPC_EMAC->IPGR = IPGR_DEF;
/* PCLK=18MHz, clock select=6, MDC=18/6=3MHz */
/* Enable Reduced MII interface. */
LPC_EMAC->MCFG = MCFG_CLK_DIV20 | MCFG_RES_MII;
for (tout = 100; tout; tout--);
LPC_EMAC->MCFG = MCFG_CLK_DIV20;
/* Enable Reduced MII interface. */
LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM | CR_PASS_RX_FILT;
/* Reset Reduced MII Logic. */
LPC_EMAC->SUPP = SUPP_RES_RMII | SUPP_SPEED;
for (tout = 100; tout; tout--);
LPC_EMAC->SUPP = SUPP_SPEED;
/* Put the PHY in reset mode */
write_PHY (PHY_REG_BMCR, 0x8000);
for (tout = 1000; tout; tout--);
// /* Wait for hardware reset to end. */
// for (tout = 0; tout < 0x100000; tout++)
// {
// regv = read_PHY (PHY_REG_BMCR);
// if (!(regv & 0x8000))
// {
// /* Reset complete */
// break;
// }
// }
// if (tout >= 0x100000)
// {
// rt_kprintf("reset failed\r\n");
// return -RT_ERROR; /* reset failed */
// }
// /* Check if this is a DP83848C PHY. */
// id1 = read_PHY (PHY_REG_IDR1);
// id2 = read_PHY (PHY_REG_IDR2);
//
// if (((id1 << 16) | (id2 & 0xFFF0)) != DP83848C_ID)
// return -RT_ERROR;
/* Configure the PHY device */
/* Configure the PHY device */
switch (lpc17xx_emac_device.phy_mode)
{
case EMAC_PHY_AUTO:
/* Use autonegotiation about the link speed. */
write_PHY (PHY_REG_BMCR, PHY_AUTO_NEG);
/* Wait to complete Auto_Negotiation. */
// for (tout = 0; tout < 0x100000; tout++)
// {
// regv = read_PHY (PHY_REG_BMSR);
// if (regv & 0x0020)
// {
// /* Autonegotiation Complete. */
// break;
// }
// }
break;
case EMAC_PHY_10MBIT:
/* Connect at 10MBit */
write_PHY (PHY_REG_BMCR, PHY_FULLD_10M);
break;
case EMAC_PHY_100MBIT:
/* Connect at 100MBit */
write_PHY (PHY_REG_BMCR, PHY_FULLD_100M);
break;
}
if (tout >= 0x100000) return -RT_ERROR; // auto_neg failed
// /* Check the link status. */
// for (tout = 0; tout < 0x10000; tout++)
// {
// regv = read_PHY (PHY_REG_STS);
// if (regv & 0x0001)
// {
// /* Link is on. */
// break;
// }
// }
// if (tout >= 0x10000) return -RT_ERROR;
regv = 0x0004;
/* Configure Full/Half Duplex mode. */
if (regv & 0x0004)
{
/* Full duplex is enabled. */
LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
LPC_EMAC->Command |= CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_FULL_DUP;
}
else
{
/* Half duplex mode. */
LPC_EMAC->IPGT = IPGT_HALF_DUP;
}
/* Configure 100MBit/10MBit mode. */
if (regv & 0x0002)
{
/* 10MBit mode. */
LPC_EMAC->SUPP = 0;
}
else
{
/* 100MBit mode. */
LPC_EMAC->SUPP = SUPP_SPEED;
}
/* Set the Ethernet MAC Address registers */
LPC_EMAC->SA0 = (lpc17xx_emac_device.dev_addr[1]<<8) | lpc17xx_emac_device.dev_addr[0];
LPC_EMAC->SA1 = (lpc17xx_emac_device.dev_addr[3]<<8) | lpc17xx_emac_device.dev_addr[2];
LPC_EMAC->SA2 = (lpc17xx_emac_device.dev_addr[5]<<8) | lpc17xx_emac_device.dev_addr[4];
/* Initialize Tx and Rx DMA Descriptors */
rx_descr_init ();
tx_descr_init ();
/* Receive Broadcast and Perfect Match Packets */
LPC_EMAC->RxFilterCtrl = RFC_BCAST_EN | RFC_PERFECT_EN;
/* Reset all interrupts */
LPC_EMAC->IntClear = 0xFFFF;
/* Enable EMAC interrupts. */
LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
/* Enable receive and transmit mode of MAC Ethernet core */
LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN);
LPC_EMAC->MAC1 |= MAC1_REC_EN;
/* Enable the ENET Interrupt */
NVIC_EnableIRQ(ENET_IRQn);
return RT_EOK;
}
static rt_err_t lpc17xx_emac_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t lpc17xx_emac_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t lpc17xx_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t lpc17xx_emac_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t lpc17xx_emac_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, lpc17xx_emac_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* EtherNet Device Interface */
/* transmit packet. */
rt_err_t lpc17xx_emac_tx( rt_device_t dev, struct pbuf* p)
{
rt_uint32_t Index, IndexNext;
struct pbuf *q;
rt_uint8_t *ptr;
/* calculate next index */
IndexNext = LPC_EMAC->TxProduceIndex + 1;
if(IndexNext > LPC_EMAC->TxDescriptorNumber) IndexNext = 0;
/* check whether block is full */
while (IndexNext == LPC_EMAC->TxConsumeIndex)
{
rt_err_t result;
rt_uint32_t recved;
/* there is no block yet, wait a flag */
result = rt_event_recv(&tx_event, 0x01,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved);
RT_ASSERT(result == RT_EOK);
}
/* lock EMAC device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* get produce index */
Index = LPC_EMAC->TxProduceIndex;
/* calculate next index */
IndexNext = LPC_EMAC->TxProduceIndex + 1;
if(IndexNext > LPC_EMAC->TxDescriptorNumber)
IndexNext = 0;
/* copy data to tx buffer */
q = p;
ptr = (rt_uint8_t*)TX_BUF(Index);
while (q)
{
memcpy(ptr, q->payload, q->len);
ptr += q->len;
q = q->next;
}
TX_DESC_CTRL(Index) &= ~0x7ff;
TX_DESC_CTRL(Index) |= (p->tot_len - 1) & 0x7ff;
/* change index to the next */
LPC_EMAC->TxProduceIndex = IndexNext;
/* unlock EMAC device */
rt_sem_release(&sem_lock);
return RT_EOK;
}
/* reception packet. */
struct pbuf *lpc17xx_emac_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t size;
rt_uint32_t Index;
/* init p pointer */
p = RT_NULL;
/* lock EMAC device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
Index = LPC_EMAC->RxConsumeIndex;
if(Index != LPC_EMAC->RxProduceIndex)
{
size = (RX_STAT_INFO(Index) & 0x7ff)+1;
if (size > ETH_FRAG_SIZE) size = ETH_FRAG_SIZE;
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, size, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
rt_uint8_t *ptr;
ptr = (rt_uint8_t*)RX_BUF(Index);
for (q = p; q != RT_NULL; q= q->next)
{
memcpy(q->payload, ptr, q->len);
ptr += q->len;
}
}
/* move Index to the next */
if(++Index > LPC_EMAC->RxDescriptorNumber)
Index = 0;
/* set consume index */
LPC_EMAC->RxConsumeIndex = Index;
}
else
{
/* Enable RxDone interrupt */
LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
}
/* unlock EMAC device */
rt_sem_release(&sem_lock);
return p;
}
void lpc17xx_emac_hw_init(void)
{
rt_event_init(&tx_event, "tx_event", RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
/* set autonegotiation mode */
lpc17xx_emac_device.phy_mode = EMAC_PHY_AUTO;
// OUI 00-60-37 NXP Semiconductors
lpc17xx_emac_device.dev_addr[0] = 0x00;
lpc17xx_emac_device.dev_addr[1] = 0x60;
lpc17xx_emac_device.dev_addr[2] = 0x37;
/* set mac address: (only for test) */
lpc17xx_emac_device.dev_addr[3] = 0x12;
lpc17xx_emac_device.dev_addr[4] = 0x34;
lpc17xx_emac_device.dev_addr[5] = 0x56;
lpc17xx_emac_device.parent.parent.init = lpc17xx_emac_init;
lpc17xx_emac_device.parent.parent.open = lpc17xx_emac_open;
lpc17xx_emac_device.parent.parent.close = lpc17xx_emac_close;
lpc17xx_emac_device.parent.parent.read = lpc17xx_emac_read;
lpc17xx_emac_device.parent.parent.write = lpc17xx_emac_write;
lpc17xx_emac_device.parent.parent.control = lpc17xx_emac_control;
lpc17xx_emac_device.parent.parent.user_data = RT_NULL;
lpc17xx_emac_device.parent.eth_rx = lpc17xx_emac_rx;
lpc17xx_emac_device.parent.eth_tx = lpc17xx_emac_tx;
eth_device_init(&(lpc17xx_emac_device.parent), "e0");
}
#ifdef RT_USING_FINSH
#include <finsh.h>
void emac_dump()
{
rt_kprintf("Command : %08x\n", LPC_EMAC->Command);
rt_kprintf("Status : %08x\n", LPC_EMAC->Status);
rt_kprintf("RxStatus : %08x\n", LPC_EMAC->RxStatus);
rt_kprintf("TxStatus : %08x\n", LPC_EMAC->TxStatus);
rt_kprintf("IntEnable: %08x\n", LPC_EMAC->IntEnable);
rt_kprintf("IntStatus: %08x\n", LPC_EMAC->IntStatus);
}
FINSH_FUNCTION_EXPORT(emac_dump, dump emac register);
#endif