rt-thread-official/bsp/stm32f429_armfly/drivers/drv_eth.c

770 lines
24 KiB
C
Raw Normal View History

2017-09-12 17:57:14 +08:00
/*
* File : application.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2017-06-08 tanek first implementation
*/
#include <rtthread.h>
#include "board.h"
#include <rtdevice.h>
#ifdef RT_USING_FINSH
#include <finsh.h>
#endif
#ifdef RT_USING_LWIP
#include <netif/ethernetif.h>
#include "lwipopts.h"
/* debug option */
//#define DEBUG
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
#ifdef DEBUG
#define STM32_ETH_PRINTF rt_kprintf
#else
#define STM32_ETH_PRINTF(...)
#endif
#define MAX_ADDR_LEN 6
#define DM9161_PHY_ADDRESS 0x01U
/* DP83848C and DM9161 PHY Registers is the same */
#define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
#define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
#define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
#define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
#define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
#define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
#define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
#define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX .DM9161 NO */
/* PHY Extended Registers only for DP83848C */
#define PHY_REG_STS 0x10 /* Status Register */
#define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
#define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
#define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
#define PHY_REG_RECR 0x15 /* Receive Error Counter */
#define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
#define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
#define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
#define PHY_REG_PHYCR 0x19 /* PHY Control Register */
#define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
#define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
#define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
/* PHY Extended Registers only for DM9161 */
#define PHY_REG_DSCR 0x10 /* Specified Congfiguration Register */
#define PHY_REG_DSCSR 0x11 /* Specified Congfiguration and Status Register */
#define PHY_REG_10BTCSR 0x12 /* 10Base-T Status/Control Register */
#define PHY_REG_PWDOR 0x13 /* Power Down Control Register */
#define PHY_REG_CONGFIG 0x14 /* Specified Congfig Register */
#define PHY_REG_INTERRUPT 0x15 /* Specified interrupt Register */
#define PHY_REG_SRECR 0x16 /* Specified Receive Error Counter */
#define PHY_REG_DISCR 0x17 /* Specified Disconnect Counter Register */
#define PHY_REG_RLSR 0x18 /* Hardware reset latch state Register */
#define PHY_REG_PSCR 0x1D /* Power Saving control register */
/* Register BMCR bit defination */
#define PHY_BMCR_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
#define PHY_BMCR_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
#define PHY_BMCR_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
#define PHY_BMCR_HALFD_10M 0x0000 /* Half Duplex 10MBit */
#define PHY_BMCR_AUTO_NEG 0x1000 /* Select Auto Negotiation */
#define PHY_BMCR_RESET ((uint16_t)0x8000U) /*!< PHY Reset */
#define PHY_BMCR_POWERDOWN ((uint16_t)0x0800U) /*!< Select the power down mode */
#define PHY_BMSR_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
#define PHY_BMSR_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
#define PHY_DSCSR_100FDX ((uint16_t)0x8000U)
#define PHY_DSCSR_100HDX ((uint16_t)0x4000U)
#define PHY_DSCSR_10FDX ((uint16_t)0x2000U)
#define PHY_DSCSR_10HDX ((uint16_t)0x1000U)
#define PHY_INT_LINK_MASK ((uint16_t)0x0C00U)
#define PHY_INT_LINK_CHANGE ((uint16_t)0x0004U)
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
uint32_t ETH_Speed; /*!< @ref ETH_Speed */
uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
};
ALIGN(4) ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB];
ALIGN(4) ETH_DMADescTypeDef DMATxDscrTab[ETH_TXBUFNB];
ALIGN(4) rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE];
ALIGN(4) rt_uint8_t Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
static rt_bool_t tx_is_waiting = RT_FALSE;
static ETH_HandleTypeDef EthHandle;
static struct rt_stm32_eth stm32_eth_device;
static struct rt_semaphore tx_wait;
void HAL_ETH_MspInit(ETH_HandleTypeDef* heth)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(heth->Instance==ETH)
{
/* USER CODE BEGIN ETH_MspInit 0 */
/* USER CODE END ETH_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_ETH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/**ETH GPIO Configuration
PC1 ------> ETH_MDC
PA1 ------> ETH_REF_CLK
PA2 ------> ETH_MDIO
PA7 ------> ETH_CRS_DV
PC4 ------> ETH_RXD0
PC5 ------> ETH_RXD1
PG11 ------> ETH_TX_EN
PG13 ------> ETH_TXD0
PB13 ------> ETH_TXD1
*/
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/* ETH interrupt Init */
HAL_NVIC_SetPriority(ETH_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
}
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
{
if (tx_is_waiting == RT_TRUE)
{
tx_is_waiting = RT_FALSE;
rt_sem_release(&tx_wait);
}
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if( result != RT_EOK )
rt_kprintf("RX err =%d\n", result );
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
rt_kprintf("eth err\n");
}
/**
* @brief This function handles EXTI line[9:5] interrupts.
*/
void EXTI9_5_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
uint32_t reg_value = 0;
int i = 10;
if (GPIO_Pin == GPIO_PIN_6)
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_INTERRUPT, &reg_value);
if (reg_value & PHY_INT_LINK_CHANGE)
{
do
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
if (reg_value & PHY_BMSR_LINKED_STATUS)
{
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
STM32_ETH_PRINTF("eth phy link up\n");
return ;
}
}
while (i--);
eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
STM32_ETH_PRINTF("eth phy link down\n");
}
}
}
static void phy_register_read(int reg)
{
uint32_t value;
if (reg > 0xFF || reg < 0)
rt_kprintf("reg address error: %d", reg);
HAL_ETH_ReadPHYRegister(&EthHandle, reg, &value);
rt_kprintf("reg: %02X ==> %08X\n", reg, value);
}
#ifdef RT_USING_FINSH
FINSH_FUNCTION_EXPORT_ALIAS(phy_register_read, phyrd, read phy registers);
#endif
static void phy_register_write(rt_uint16_t reg, rt_uint32_t value)
{
if (reg > 0xFF)
rt_kprintf("reg address error: %d", reg);
HAL_ETH_WritePHYRegister(&EthHandle, reg, value);
rt_kprintf("reg: %02X ==> %08X\n", reg, value);
}
#ifdef RT_USING_FINSH
FINSH_FUNCTION_EXPORT_ALIAS(phy_register_write, phywr, write phy registers);
#endif
void eth_link_exit_config(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin : PH6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/* EXTI9_5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
}
rt_err_t eth_phy_init(void)
{
uint32_t reg_value = 0;
int i, j, k;
HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_BMCR, PHY_RESET);
for (i = 0x10000; i > 0; i--)
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMCR, &reg_value);
if (!(reg_value & (PHY_BMCR_RESET | PHY_BMCR_POWERDOWN)))
{
STM32_ETH_PRINTF("PHY Reset Finsh\n");
break;
}
}
if (i <= 0)
{
STM32_ETH_PRINTF("PHY Power Up Error: %08X\n", reg_value);
return -RT_ETIMEOUT;
}
HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_BMCR, PHY_AUTONEGOTIATION);
for (j = 0x10000; j > 0; j--)
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
if (reg_value & PHY_BMSR_AUTONEGO_COMPLETE)
{
STM32_ETH_PRINTF("Autonegotiation Complete\n");
/* Autonegotiation Complete. */
break;
}
}
if (j <= 0)
{
STM32_ETH_PRINTF("Autonegotiation failed: %08X\n", reg_value);
return -RT_ETIMEOUT;
}
/* Check the link status. */
for (k = 0x10000; k > 0; k--)
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
if (reg_value & PHY_LINKED_STATUS)
{
/* Link */
/* Link is on, get connection info */
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_DSCSR, &reg_value);
if ((reg_value & (PHY_DSCSR_100FDX | PHY_DSCSR_100HDX)))
STM32_ETH_PRINTF("100M ");
else
STM32_ETH_PRINTF("10M ");
if ((reg_value & (PHY_DSCSR_100FDX | PHY_DSCSR_10FDX)))
STM32_ETH_PRINTF("Full");
else
STM32_ETH_PRINTF("Half");
STM32_ETH_PRINTF(" Duplex Operation Mode\n");
break;
}
}
if (k <= 0)
{
STM32_ETH_PRINTF("check link status failed: %08X\n", reg_value);
return -RT_ETIMEOUT;
}
HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_INTERRUPT, PHY_INT_LINK_MASK);
STM32_ETH_PRINTF("Reset try: %d\n", i);
STM32_ETH_PRINTF("Autonegotiation try: %d\n", j);
STM32_ETH_PRINTF("Check try: %d\n", k);
return RT_EOK;
}
/* initialize the interface */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
__HAL_RCC_ETH_CLK_ENABLE();
/* ETHERNET Configuration --------------------------------------------------*/
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
EthHandle.Init.Speed = ETH_SPEED_100M;
EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
//EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
EthHandle.Init.PhyAddress = DM9161_PHY_ADDRESS;
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) == HAL_OK)
{
STM32_ETH_PRINTF("eth hardware init sucess...\n");
}
else
{
STM32_ETH_PRINTF("eth hardware init faild...\n");
}
/* Initialize Tx Descriptors list: Chain Mode */
HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) == HAL_OK)
{
STM32_ETH_PRINTF("eth hardware start success...\n");
}
else
{
STM32_ETH_PRINTF("eth hardware start faild...\n");
}
eth_phy_init();
eth_link_exit_config();
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
{
rt_err_t ret = RT_ERROR;
HAL_StatusTypeDef state;
struct pbuf *q;
uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
bufferoffset = 0;
STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
rt_err_t result;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
tx_is_waiting = RT_TRUE;
rt_hw_interrupt_enable(level);
/* it's own bit set, wait it */
result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
if (result == RT_EOK) break;
if (result == -RT_ERROR) return -RT_ERROR;
}
/* copy frame from pbufs to driver buffers */
for(q = p; q != NULL; q = q->next)
{
/* Is this buffer available? If not, goto error */
if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
STM32_ETH_PRINTF("buffer not valid ...\n");
ret = ERR_USE;
goto error;
}
STM32_ETH_PRINTF("copy one frame\n");
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
{
/* Copy data to Tx buffer*/
memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset),
(uint8_t*)((uint8_t*)q->payload + payloadoffset),
(ETH_TX_BUF_SIZE - bufferoffset) );
/* Point to next descriptor */
DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
ret = ERR_USE;
goto error;
}
buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset),
(uint8_t*)((uint8_t*)q->payload + payloadoffset),
byteslefttocopy );
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = buffer;
STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
for(i=0; i<p->tot_len; i++)
{
STM32_ETH_PRINTF("%02x ",*ptr);
ptr++;
if(((i+1)%8) == 0)
{
STM32_ETH_PRINTF(" ");
}
if(((i+1)%16) == 0)
{
STM32_ETH_PRINTF("\r\n");
}
}
STM32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
/* Prepare transmit descriptors to give to DMA */
STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
if (state != HAL_OK)
{
STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
}
ret = ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
{
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
return ret;
}
/* reception packet. */
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
HAL_StatusTypeDef state;
uint16_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t i=0;
STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
/* Get received frame */
state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
if (state != HAL_OK)
{
//STM32_ETH_PRINTF("receive frame faild\n");
return NULL;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
STM32_ETH_PRINTF("receive frame len : %d\n", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = buffer;
STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
for (i = 0; i < len; i++)
{
STM32_ETH_PRINTF("%02x ", *ptr);
ptr++;
if (((i + 1) % 8) == 0)
{
STM32_ETH_PRINTF(" ");
}
if (((i + 1) % 16) == 0)
{
STM32_ETH_PRINTF("\r\n");
}
}
STM32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
if (p != NULL)
{
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for(q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
{
/* Copy data to pbuf */
memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
{
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount =0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return p;
}
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state;
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
STM32_ETH_PRINTF("sem init: tx_wait\r\n");
/* init tx semaphore */
rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
/* register eth device */
STM32_ETH_PRINTF("eth_device_init start\r\n");
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
STM32_ETH_PRINTF("eth_device_init success\r\n");
}
else
{
STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
#endif