4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-24 15:37:20 +08:00

547 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-11-26 zhaohaisheng copy from sch and do some change
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#ifdef BSP_USING_SPI
#include "drv_spi.h"
#include <string.h>
#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
};
static struct ch32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
{ \
.Instance = SPI1, \
.bus_name = "spi1", \
.irq_type = SPI1_IRQn, \
},
#endif
#ifdef BSP_USING_SPI2
{ \
.Instance = SPI2, \
.bus_name = "spi2", \
.irq_type = SPI2_IRQn, \
},
#endif
#ifdef BSP_USING_SPI3
{ \
.Instance = SPI3, \
.bus_name = "spi3", \
.irq_type = SPI3_IRQn, \
}
#endif
};
static struct ch32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_uint32_t ch32_spi_clock_get(SPI_TypeDef *spix);
static void ch32_spi_clock_and_io_init(SPI_TypeDef *spix);
2022-12-02 17:00:52 +08:00
static rt_uint8_t spix_readwritebyte(SPI_TypeDef *Instance, rt_uint8_t TxData);
static rt_err_t spi_transmitreceive(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint8_t *recv_buf, rt_uint16_t send_length);
static rt_err_t spi_transmit(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint16_t send_length);
static rt_err_t spi_receive(SPI_TypeDef *Instance, rt_uint8_t *recv_buf,rt_uint16_t send_length);
static void ch32_spi_clock_and_io_init(SPI_TypeDef *spix)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
if (spix == SPI1)
{
RCC_APB2PeriphClockCmd( RCC_APB2Periph_SPI1|RCC_APB2Periph_GPIOA, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOA, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOA, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOA, &GPIO_InitStructure );
}
if (spix == SPI2)
{
RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2, ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
}
if (spix == SPI3)
{
RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI3, ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init( GPIOB, &GPIO_InitStructure );
}
}
static rt_uint32_t ch32_spi_clock_get(SPI_TypeDef *spix)
{
RCC_ClocksTypeDef RCC_Clocks;
RCC_GetClocksFreq(&RCC_Clocks);
if (spix == SPI1)
{
return RCC_Clocks.PCLK2_Frequency;
}
if (spix == SPI2)
{
return RCC_Clocks.PCLK1_Frequency;
}
if (spix == SPI3)
{
return RCC_Clocks.PCLK1_Frequency;
}
return RCC_Clocks.PCLK2_Frequency;
}
/*
*spix read write byte
* */
2022-12-02 17:00:52 +08:00
static rt_uint8_t spix_readwritebyte(SPI_TypeDef *Instance, rt_uint8_t TxData)
{
rt_uint8_t i=0;
while (SPI_I2S_GetFlagStatus(Instance, SPI_I2S_FLAG_TXE) == RESET)
{
i++;
if (i > 200) return 0;
}
SPI_I2S_SendData(Instance, TxData);
i=0;
while (SPI_I2S_GetFlagStatus(Instance, SPI_I2S_FLAG_RXNE) == RESET)
{
i++;
if(i > 200) return 0;
}
return SPI_I2S_ReceiveData(Instance);
}
/*
*spi transmit and receive
* */
static rt_err_t spi_transmitreceive(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint8_t *recv_buf, rt_uint16_t send_length)
{
rt_uint16_t i=0;
for(i = 0; i < send_length; i++)
{
2022-12-02 17:00:52 +08:00
recv_buf[i] = spix_readwritebyte(Instance, send_buf[i]);
}
return RT_EOK;
}
/*
*spi transmit
* */
static rt_err_t spi_transmit(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint16_t send_length)
{
rt_uint16_t i=0;
for(i = 0; i < send_length; i++)
{
2022-12-02 17:00:52 +08:00
spix_readwritebyte(Instance, send_buf[i]);
}
return RT_EOK;
}
/*
*spi receive
* */
static rt_err_t spi_receive(SPI_TypeDef *Instance, rt_uint8_t *recv_buf,rt_uint16_t send_length)
{
rt_uint16_t i=0;
for(i = 0; i < send_length; i++)
{
2022-12-02 17:00:52 +08:00
recv_buf[i] = spix_readwritebyte(Instance, 0xFF); /*发送数据为0xff 此时显示为不发送*/
}
return RT_EOK;
}
static rt_err_t ch32_spi_init(struct ch32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.SPI_Mode = SPI_Mode_Slave;
}
else
{
spi_handle->Init.SPI_Mode = SPI_Mode_Master;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.SPI_Direction = SPI_Direction_1Line_Rx;
}
else
{
spi_handle->Init.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
}
if (cfg->data_width <= 8)
{
spi_handle->Init.SPI_DataSize = SPI_DataSize_8b;
spi_handle->TxXferSize = 8;
spi_handle->RxXferSize = 8;
}
else if (cfg->data_width <= 16)
{
spi_handle->Init.SPI_DataSize = SPI_DataSize_16b;
}
else
{
return -RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.SPI_CPHA = SPI_CPHA_2Edge;
}
else
{
spi_handle->Init.SPI_CPHA = SPI_CPHA_1Edge;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.SPI_CPOL = SPI_CPOL_High;
}
else
{
spi_handle->Init.SPI_CPOL = SPI_CPOL_Low;
}
spi_handle->Init.SPI_NSS = SPI_NSS_Soft;
//device is not RT_NULL, so spi_bus not need check
rt_uint32_t SPI_APB_CLOCK;
ch32_spi_clock_and_io_init(spi_handle->Instance);
SPI_APB_CLOCK = ch32_spi_clock_get(spi_handle->Instance);
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
HAL_RCC_GetSysClockFreq(),
SPI_APB_CLOCK,
cfg->max_hz,
spi_handle->Init.SPI_BaudRatePrescaler);
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.SPI_FirstBit = SPI_FirstBit_MSB;
}
else
{
spi_handle->Init.SPI_FirstBit = SPI_FirstBit_LSB;
}
SPI_Init(spi_handle->Instance, &spi_handle->Init);
/* Enable SPI_MASTER */
SPI_Cmd(spi_handle->Instance, ENABLE);
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct ch32_spi *spi_drv = rt_container_of(device->bus, struct ch32_spi, spi_bus);
spi_drv->cfg = configuration;
return ch32_spi_init(spi_drv, configuration);
}
static rt_ssize_t spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_err_t state = RT_EOK;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != NULL);
struct ch32_spi *spi_drv = rt_container_of(device->bus, struct ch32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct ch32_hw_spi_cs *cs = device->parent.user_data;
/* take CS */
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_SET);
else
GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(rt_uint32_t)message->send_buf,
(rt_uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
/* avoid null pointer problems */
if (message->send_buf)
{
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
}
if (message->recv_buf)
{
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
}
/* start once data exchange */
if (message->send_buf && message->recv_buf)
{
state = spi_transmitreceive(spi_handle->Instance, (rt_uint8_t *)send_buf, (rt_uint8_t *)recv_buf, send_length);
}
else if (message->send_buf)
{
state = spi_transmit(spi_handle->Instance, (rt_uint8_t *)send_buf, send_length);
if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
{
/* release the CS by disable SPI when using 3 wires SPI */
SPI_Cmd(spi_handle->Instance, DISABLE);
}
}
else
{
rt_memset((rt_uint8_t *)recv_buf, 0xff, send_length);
/* clear the old error flag */
SPI_I2S_ClearFlag(spi_handle->Instance, SPI_I2S_FLAG_OVR);
state = spi_receive(spi_handle->Instance, (rt_uint8_t *)recv_buf, send_length);
}
if (state != RT_EOK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
}
/* release CS */
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_RESET);
else
GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_SET);
}
if(state != RT_EOK)
{
return -RT_ERROR;
}
return message->length;
}
static const struct rt_spi_ops ch32_spi_ops =
{
.configure = spi_configure,
.xfer = spi_xfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &ch32_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, rt_uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct ch32_hw_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.GPIO_Pin = cs_gpio_pin;
GPIO_Initure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Initure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(cs_gpiox, &GPIO_Initure);
GPIO_WriteBit(cs_gpiox, cs_gpio_pin, Bit_SET);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct ch32_hw_spi_cs *)rt_malloc(sizeof(struct ch32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
int rt_hw_spi_init(void)
{
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI */