rt-thread-official/bsp/mini2440/drivers/dm9000.c

667 lines
16 KiB
C
Raw Normal View History

2013-01-08 22:40:58 +08:00
#include <rtthread.h>
#include <netif/ethernetif.h>
#include "dm9000.h"
#include <s3c24x0.h>
/*
* Davicom DM9000EP driver
*
* IRQ_LAN connects to EINT7(GPF7)
* nLAN_CS connects to nGCS4
*/
/* #define DM9000_DEBUG 1 */
#if DM9000_DEBUG
#define DM9000_TRACE rt_kprintf
#else
#define DM9000_TRACE(...)
#endif
/*
* DM9000 interrupt line is connected to PF7
*/
//--------------------------------------------------------
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define MAX_ADDR_LEN 6
enum DM9000_PHY_mode
{
DM9000_10MHD = 0, DM9000_100MHD = 1,
DM9000_10MFD = 4, DM9000_100MFD = 5,
DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
};
enum DM9000_TYPE
{
TYPE_DM9000E,
TYPE_DM9000A,
TYPE_DM9000B
};
struct rt_dm9000_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enum DM9000_TYPE type;
enum DM9000_PHY_mode mode;
rt_uint8_t packet_cnt; /* packet I or II */
rt_uint16_t queue_packet_len; /* queued packet (packet II) */
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_dm9000_eth dm9000_device;
static struct rt_semaphore sem_ack, sem_lock;
void rt_dm9000_isr(int irqno);
static void delay_ms(rt_uint32_t ms)
{
rt_uint32_t len;
for (;ms > 0; ms --)
for (len = 0; len < 100; len++ );
}
/* Read a byte from I/O port */
rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
{
DM9000_IO = reg;
return (rt_uint8_t) DM9000_DATA;
}
/* Write a byte to I/O port */
rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
{
DM9000_IO = reg;
DM9000_DATA = value;
}
/* Read a word from phyxcer */
rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
{
rt_uint16_t val;
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
delay_ms(100); /* Wait read complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
return val;
}
/* Write a word to phyxcer */
rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
{
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
dm9000_io_write(DM9000_EPDRL, (value & 0xff));
dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
delay_ms(500); /* Wait write complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
}
/* Set PHY operationg mode */
rt_inline void phy_mode_set(rt_uint32_t media_mode)
{
rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
if (!(media_mode & DM9000_AUTO))
{
switch (media_mode)
{
case DM9000_10MHD:
phy_reg4 = 0x21;
phy_reg0 = 0x0000;
break;
case DM9000_10MFD:
phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9000_100MHD:
phy_reg4 = 0x81;
phy_reg0 = 0x2000;
break;
case DM9000_100MFD:
phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
}
phy_write(4, phy_reg4); /* Set PHY media mode */
phy_write(0, phy_reg0); /* Tmp */
}
dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
}
/* interrupt service routine */
void rt_dm9000_isr(int irqno)
{
rt_uint16_t int_status;
rt_uint16_t last_io;
rt_uint32_t eint_pend;
last_io = DM9000_IO;
/* Disable all interrupts */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
/* receive overflow */
if (int_status & ISR_ROS)
{
rt_kprintf("overflow\n");
}
if (int_status & ISR_ROOS)
{
rt_kprintf("overflow counter overflow\n");
}
/* Received the coming packet */
if (int_status & ISR_PRS)
{
/* a frame has been received */
eth_device_ready(&(dm9000_device.parent));
}
/* Transmit Interrupt check */
if (int_status & ISR_PTS)
{
/* transmit done */
int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END))
{
dm9000_device.packet_cnt --;
if (dm9000_device.packet_cnt > 0)
{
DM9000_TRACE("dm9000 isr: tx second packet\n");
/* transmit packet II */
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
/* One packet sent complete */
rt_sem_release(&sem_ack);
}
}
/* Re-enable interrupt mask */
dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
DM9000_IO = last_io;
}
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9000_init(rt_device_t dev)
{
int i, oft, lnk;
rt_uint32_t value;
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
delay_ms(1000); /* delay 1ms */
/* identfy DM9000 */
value = dm9000_io_read(DM9000_VIDL);
value |= dm9000_io_read(DM9000_VIDH) << 8;
value |= dm9000_io_read(DM9000_PIDL) << 16;
value |= dm9000_io_read(DM9000_PIDH) << 24;
if (value == DM9000_ID)
{
rt_kprintf("dm9000 id: 0x%x\n", value);
}
else
{
rt_kprintf("dm9000 id: 0x%x\n", value);
return -RT_ERROR;
}
/* GPIO0 on pre-activate PHY */
dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
/* Set PHY */
phy_mode_set(dm9000_device.mode);
/* Program operating register */
dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
/* set mac address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
dm9000_io_write(oft, dm9000_device.dev_addr[i]);
/* set multicast address */
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_io_write(oft, 0xff);
/* Activate DM9000 */
dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
dm9000_io_write(DM9000_IMR, IMR_PAR);
if (dm9000_device.mode == DM9000_AUTO)
{
i = 0;
while (!(phy_read(1) & 0x20))
{
/* autonegation complete bit */
rt_thread_delay( RT_TICK_PER_SECOND/10 );
i++;
if (i > 30 ) /* wait 3s */
{
rt_kprintf("could not establish link\n");
return 0;
}
}
}
/* see what we've got */
lnk = phy_read(17) >> 12;
rt_kprintf("operating at ");
switch (lnk)
{
case 1:
rt_kprintf("10M half duplex ");
break;
case 2:
rt_kprintf("10M full duplex ");
break;
case 4:
rt_kprintf("100M half duplex ");
break;
case 8:
rt_kprintf("100M full duplex ");
break;
default:
rt_kprintf("unknown: %d ", lnk);
break;
}
rt_kprintf("mode\n");
/* Enable TX/RX interrupt mask */
dm9000_io_write(DM9000_IMR,IMR_PAR | IMR_PTM | IMR_PRM);
return RT_EOK;
}
static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_dm9000_close(rt_device_t dev)
{
/* RESET devie */
phy_write(0, 0x8000); /* PHY RESET */
dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
return RT_EOK;
}
static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_dm9000_control(rt_device_t dev, int cmd, void *args)
2013-01-08 22:40:58 +08:00
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
{
DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* disable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Move data to DM9000 TX RAM */
DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
{
/* q traverses through linked list of pbuf's
* This list MUST consist of a single packet ONLY */
struct pbuf *q;
rt_uint16_t pbuf_index = 0;
rt_uint8_t word[2], word_index = 0;
q = p;
/* Write data into dm9000a, two bytes at a time
* Handling pbuf's with odd number of bytes correctly
* No attempt to optimize for speed has been made */
while (q)
{
if (pbuf_index < q->len)
{
word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
if (word_index == 2)
{
DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
word_index = 0;
}
}
else
{
q = q->next;
pbuf_index = 0;
}
}
/* One byte could still be unsent */
if (word_index == 1)
{
DM9000_outw(DM9000_DATA_BASE, word[0]);
}
}
if (dm9000_device.packet_cnt == 0)
{
DM9000_TRACE("dm9000 tx: first packet\n");
dm9000_device.packet_cnt ++;
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
else
{
DM9000_TRACE("dm9000 tx: second packet\n");
dm9000_device.packet_cnt ++;
dm9000_device.queue_packet_len = p->tot_len;
}
/* enable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
/* wait ack */
rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
DM9000_TRACE("dm9000 tx done\n");
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_dm9000_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t rxbyte;
rt_uint16_t rx_status, rx_len;
rt_uint16_t* data;
/* init p pointer */
p = RT_NULL;
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
__error_retry:
/* Check packet ready or not */
dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
if (rxbyte)
{
if (rxbyte > 1)
{
DM9000_TRACE("dm9000 rx: rx error, stop device\n");
dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
}
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
rx_status = DM9000_inw(DM9000_DATA_BASE);
rx_len = DM9000_inw(DM9000_DATA_BASE);
DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
rt_int32_t len;
for (q = p; q != RT_NULL; q= q->next)
{
data = (rt_uint16_t*)q->payload;
len = q->len;
while (len > 0)
{
*data = DM9000_inw(DM9000_DATA_BASE);
data ++;
len -= 2;
}
}
}
else
{
rt_uint16_t dummy;
rt_kprintf("dm9000 rx: no pbuf\n");
/* no pbuf, discard data from DM9000 */
data = &dummy;
while (rx_len)
{
*data = DM9000_inw(DM9000_DATA_BASE);
rx_len -= 2;
}
}
if ((rx_status & 0xbf00) || (rx_len < 0x40)
|| (rx_len > DM9000_PKT_MAX))
{
rt_kprintf("rx error: status %04x, rx_len: %d\n", rx_status, rx_len);
if (rx_status & 0x100)
{
rt_kprintf("rx fifo error\n");
}
if (rx_status & 0x200)
{
rt_kprintf("rx crc error\n");
}
if (rx_status & 0x8000)
{
rt_kprintf("rx length error\n");
}
if (rx_len > DM9000_PKT_MAX)
{
rt_kprintf("rx length too big\n");
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
rt_thread_delay(1); /* delay 5ms */
}
/* it issues an error, release pbuf */
if (p != RT_NULL) pbuf_free(p);
p = RT_NULL;
goto __error_retry;
}
}
else
{
/* clear packet received latch status */
dm9000_io_write(DM9000_ISR, ISR_PTS);
/* restore receive interrupt */
dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
}
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
return p;
}
#define B4_Tacs 0x0
#define B4_Tcos 0x0
#define B4_Tacc 0x7
#define B4_Tcoh 0x0
#define B4_Tah 0x0
#define B4_Tacp 0x0
#define B4_PMC 0x0
void INTEINT4_7_handler(int irqno, void *param)
2013-01-08 22:40:58 +08:00
{
rt_uint32_t eint_pend;
eint_pend = EINTPEND;
/* EINT7 : DM9000AEP */
if( eint_pend & (1<<7) )
{
rt_dm9000_isr(0);
}
/* clear EINT pending bit */
EINTPEND = eint_pend;
}
void rt_hw_dm9000_init()
{
/* Set GPF7 as EINT7 */
GPFCON = GPFCON & (~(3 << 14)) | (2 << 14);
GPFUP = GPFUP | (1 << 7);
/* EINT7 High level interrupt */
EXTINT0 = (EXTINT0 & (~(0x7 << 28))) | (0x1 << 28);
/* Enable EINT7 */
EINTMASK = EINTMASK & (~(1<<7));
/* Set GPA15 as nGCS4 */
GPACON |= 1 << 15;
/* DM9000 width 16, wait enable */
BWSCON = BWSCON & (~(0x7<<16)) | (0x5<<16);
BANKCON4 = (1<<13) | (1<<11) | (0x6<<8) | (1<<6) | (1<<4) | (0<<2) | (0);
rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
dm9000_device.type = TYPE_DM9000A;
dm9000_device.mode = DM9000_AUTO;
dm9000_device.packet_cnt = 0;
dm9000_device.queue_packet_len = 0;
/*
* SRAM Tx/Rx pointer automatically return to start address,
* Packet Transmitted, Packet Received
*/
dm9000_device.dev_addr[0] = 0x00;
dm9000_device.dev_addr[1] = 0x60;
dm9000_device.dev_addr[2] = 0x6E;
dm9000_device.dev_addr[3] = 0x11;
dm9000_device.dev_addr[4] = 0x02;
dm9000_device.dev_addr[5] = 0x0F;
dm9000_device.parent.parent.init = rt_dm9000_init;
dm9000_device.parent.parent.open = rt_dm9000_open;
dm9000_device.parent.parent.close = rt_dm9000_close;
dm9000_device.parent.parent.read = rt_dm9000_read;
dm9000_device.parent.parent.write = rt_dm9000_write;
dm9000_device.parent.parent.control = rt_dm9000_control;
dm9000_device.parent.parent.user_data = RT_NULL;
dm9000_device.parent.eth_rx = rt_dm9000_rx;
dm9000_device.parent.eth_tx = rt_dm9000_tx;
eth_device_init(&(dm9000_device.parent), "e0");
/* instal interrupt */
rt_hw_interrupt_install(INTEINT4_7, INTEINT4_7_handler, RT_NULL, "EINT4_7");
2013-01-08 22:40:58 +08:00
rt_hw_interrupt_umask(INTEINT4_7);
}
void dm9000a(void)
{
rt_kprintf("\n");
rt_kprintf("NCR (%02X): %02x\n", DM9000_NCR, dm9000_io_read(DM9000_NCR));
rt_kprintf("NSR (%02X): %02x\n", DM9000_NSR, dm9000_io_read(DM9000_NSR));
rt_kprintf("TCR (%02X): %02x\n", DM9000_TCR, dm9000_io_read(DM9000_TCR));
rt_kprintf("TSRI (%02X): %02x\n", DM9000_TSR1, dm9000_io_read(DM9000_TSR1));
rt_kprintf("TSRII (%02X): %02x\n", DM9000_TSR2, dm9000_io_read(DM9000_TSR2));
rt_kprintf("RCR (%02X): %02x\n", DM9000_RCR, dm9000_io_read(DM9000_RCR));
rt_kprintf("RSR (%02X): %02x\n", DM9000_RSR, dm9000_io_read(DM9000_RSR));
rt_kprintf("ORCR (%02X): %02x\n", DM9000_ROCR, dm9000_io_read(DM9000_ROCR));
rt_kprintf("CRR (%02X): %02x\n", DM9000_CHIPR, dm9000_io_read(DM9000_CHIPR));
rt_kprintf("CSCR (%02X): %02x\n", DM9000_CSCR, dm9000_io_read(DM9000_CSCR));
rt_kprintf("RCSSR (%02X): %02x\n", DM9000_RCSSR, dm9000_io_read(DM9000_RCSSR));
rt_kprintf("ISR (%02X): %02x\n", DM9000_ISR, dm9000_io_read(DM9000_ISR));
rt_kprintf("IMR (%02X): %02x\n", DM9000_IMR, dm9000_io_read(DM9000_IMR));
rt_kprintf("\n");
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump);
#endif