rt-thread-official/bsp/stm32f429-apollo/drivers/drv_eth.c

597 lines
17 KiB
C
Raw Normal View History

/*
* File : application.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2017-06-08 tanek first implementation
*/
#include <rtthread.h>
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "board.h"
#include "drv_pcf8574.h"
#include <rtdevice.h>
#include <finsh.h>
/* debug option */
//#define DEBUG
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
#ifdef DEBUG
#define STM32_ETH_PRINTF rt_kprintf
#else
#define STM32_ETH_PRINTF(...)
#endif
/*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> RMII<49>ӿ<EFBFBD>
ETH_MDIO -------------------------> PA2
ETH_MDC --------------------------> PC1
ETH_RMII_REF_CLK------------------> PA1
ETH_RMII_CRS_DV ------------------> PA7
ETH_RMII_RXD0 --------------------> PC4
ETH_RMII_RXD1 --------------------> PC5
ETH_RMII_TX_EN -------------------> PB11
ETH_RMII_TXD0 --------------------> PG13
ETH_RMII_TXD1 --------------------> PG14
ETH_RESET-------------------------> PCF8574<EFBFBD><EFBFBD>չIO
*/
#define ETH_MDIO_PORN GPIOA
#define ETH_MDIO_PIN GPIO_PIN_2
#define ETH_MDC_PORN GPIOC
#define ETH_MDC_PIN GPIO_PIN_1
#define ETH_RMII_REF_CLK_PORN GPIOA
#define ETH_RMII_REF_CLK_PIN GPIO_PIN_1
#define ETH_RMII_CRS_DV_PORN GPIOA
#define ETH_RMII_CRS_DV_PIN GPIO_PIN_7
#define ETH_RMII_RXD0_PORN GPIOC
#define ETH_RMII_RXD0_PIN GPIO_PIN_4
#define ETH_RMII_RXD1_PORN GPIOC
#define ETH_RMII_RXD1_PIN GPIO_PIN_5
#define ETH_RMII_TX_EN_PORN GPIOB
#define ETH_RMII_TX_EN_PIN GPIO_PIN_11
#define ETH_RMII_TXD0_PORN GPIOG
#define ETH_RMII_TXD0_PIN GPIO_PIN_13
#define ETH_RMII_TXD1_PORN GPIOG
#define ETH_RMII_TXD1_PIN GPIO_PIN_14
#define LAN8742A_PHY_ADDRESS 0x00
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
uint32_t ETH_Speed; /*!< @ref ETH_Speed */
uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
};
static ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
static rt_bool_t tx_is_waiting = RT_FALSE;
static ETH_HandleTypeDef EthHandle;
static struct rt_stm32_eth stm32_eth_device;
static struct rt_semaphore tx_wait;
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
{
if (tx_is_waiting == RT_TRUE)
{
tx_is_waiting = RT_FALSE;
rt_sem_release(&tx_wait);
}
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if( result != RT_EOK )
rt_kprintf("RX err =%d\n", result );
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
rt_kprintf("eth err\n");
}
static void phy_pin_reset(void)
{
rt_base_t level;
extern void delay_ms(rt_uint32_t nms);
level = rt_hw_interrupt_disable();
rt_pcf8574_write_bit(ETH_RESET_IO, 1);
delay_ms(100);
rt_pcf8574_write_bit(ETH_RESET_IO, 0);
delay_ms(100);
rt_hw_interrupt_enable(level);
}
#ifdef DEBUG
FINSH_FUNCTION_EXPORT(phy_pin_reset, phy hardware reset);
#endif
/* initialize the interface */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
__HAL_RCC_ETH_CLK_ENABLE();
rt_pcf8574_init();
phy_pin_reset();
/* ETHERNET Configuration --------------------------------------------------*/
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
EthHandle.Init.Speed = ETH_SPEED_100M;
EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
//EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
EthHandle.Init.PhyAddress = LAN8742A_PHY_ADDRESS;
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) == HAL_OK)
{
STM32_ETH_PRINTF("eth hardware init sucess...\n");
}
else
{
STM32_ETH_PRINTF("eth hardware init faild...\n");
}
/* Initialize Tx Descriptors list: Chain Mode */
HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) == HAL_OK)
{
STM32_ETH_PRINTF("eth hardware start success...\n");
}
else
{
STM32_ETH_PRINTF("eth hardware start faild...\n");
}
//phy_monitor_thread_entry(NULL);
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
{
rt_err_t ret = RT_ERROR;
HAL_StatusTypeDef state;
struct pbuf *q;
uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
bufferoffset = 0;
STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
rt_err_t result;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
tx_is_waiting = RT_TRUE;
rt_hw_interrupt_enable(level);
/* it's own bit set, wait it */
result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
if (result == RT_EOK) break;
if (result == -RT_ERROR) return -RT_ERROR;
}
/* copy frame from pbufs to driver buffers */
for(q = p; q != NULL; q = q->next)
{
/* Is this buffer available? If not, goto error */
if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
STM32_ETH_PRINTF("buffer not valid ...\n");
ret = ERR_USE;
goto error;
}
STM32_ETH_PRINTF("copy one frame\n");
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
{
/* Copy data to Tx buffer*/
memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
/* Point to next descriptor */
DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
ret = ERR_USE;
goto error;
}
buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = buffer;
STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
for(i=0; i<p->tot_len; i++)
{
STM32_ETH_PRINTF("%02x ",*ptr);
ptr++;
if(((i+1)%8) == 0)
{
STM32_ETH_PRINTF(" ");
}
if(((i+1)%16) == 0)
{
STM32_ETH_PRINTF("\r\n");
}
}
STM32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
/* Prepare transmit descriptors to give to DMA */
STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
if (state != HAL_OK)
{
STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
}
ret = ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
{
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
return ret;
}
/* reception packet. */
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
HAL_StatusTypeDef state;
uint16_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t i=0;
STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
/* Get received frame */
state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
if (state != HAL_OK)
{
STM32_ETH_PRINTF("receive frame faild\n");
return NULL;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
STM32_ETH_PRINTF("receive frame len : %d\n", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = buffer;
STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
for (i = 0; i < len; i++)
{
STM32_ETH_PRINTF("%02x ", *ptr);
ptr++;
if (((i + 1) % 8) == 0)
{
STM32_ETH_PRINTF(" ");
}
if (((i + 1) % 16) == 0)
{
STM32_ETH_PRINTF("\r\n");
}
}
STM32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
if (p != NULL)
{
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for(q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
{
/* Copy data to pbuf */
memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
{
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount =0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return p;
}
static void NVIC_Configuration(void)
{
/* Enable the Ethernet global Interrupt */
HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
}
/*
* GPIO Configuration for ETH
*/
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
STM32_ETH_PRINTF("GPIO_Configuration...\n");
/* Enable SYSCFG clock */
__HAL_RCC_ETH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Pin = ETH_MDIO_PIN;
HAL_GPIO_Init(ETH_MDIO_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_MDC_PIN;
HAL_GPIO_Init(ETH_MDC_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_RXD0_PIN;
HAL_GPIO_Init(ETH_RMII_RXD0_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_RXD1_PIN;
HAL_GPIO_Init(ETH_RMII_RXD1_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_TX_EN_PIN;
HAL_GPIO_Init(ETH_RMII_TX_EN_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_TXD0_PIN;
HAL_GPIO_Init(ETH_RMII_TXD0_PORN,&GPIO_InitStructure);
GPIO_InitStructure.Pin = ETH_RMII_TXD1_PIN;
HAL_GPIO_Init(ETH_RMII_TXD1_PORN,&GPIO_InitStructure);
HAL_NVIC_SetPriority(ETH_IRQn,1,0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
}
void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
{
GPIO_Configuration();
NVIC_Configuration();
}
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state;
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
STM32_ETH_PRINTF("sem init: tx_wait\r\n");
/* init tx semaphore */
rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
/* register eth device */
STM32_ETH_PRINTF("eth_device_init start\r\n");
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
STM32_ETH_PRINTF("eth_device_init success\r\n");
}
else
{
STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);