rt-thread-official/bsp/frdm-k64f/device/MK64F12/fsl_ftm.c

909 lines
30 KiB
C
Raw Permalink Normal View History

2017-07-01 11:33:12 +08:00
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_ftm.h"
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Gets the instance from the base address
*
* @param base FTM peripheral base address
*
* @return The FTM instance
*/
static uint32_t FTM_GetInstance(FTM_Type *base);
/*!
* @brief Sets the FTM register PWM synchronization method
*
* This function will set the necessary bits for the PWM synchronization mode that
* user wishes to use.
*
* @param base FTM peripheral base address
* @param syncMethod Syncronization methods to use to update buffered registers. This is a logical
* OR of members of the enumeration ::ftm_pwm_sync_method_t
*/
static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod);
/*!
* @brief Sets the reload points used as loading points for register update
*
* This function will set the necessary bits based on what the user wishes to use as loading
* points for FTM register update. When using this it is not required to use PWM synchnronization.
*
* @param base FTM peripheral base address
* @param reloadPoints FTM reload points. This is a logical OR of members of the
* enumeration ::ftm_reload_point_t
*/
static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to FTM bases for each instance. */
static FTM_Type *const s_ftmBases[] = FTM_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to FTM clocks for each instance. */
static const clock_ip_name_t s_ftmClocks[] = FTM_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t FTM_GetInstance(FTM_Type *base)
{
uint32_t instance;
uint32_t ftmArrayCount = (sizeof(s_ftmBases) / sizeof(s_ftmBases[0]));
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ftmArrayCount; instance++)
{
if (s_ftmBases[instance] == base)
{
break;
}
}
assert(instance < ftmArrayCount);
return instance;
}
static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod)
{
uint8_t chnlNumber = 0;
uint32_t reg = 0, syncReg = 0;
syncReg = base->SYNC;
/* Enable PWM synchronization of output mask register */
syncReg |= FTM_SYNC_SYNCHOM_MASK;
reg = base->COMBINE;
for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
{
/* Enable PWM synchronization of registers C(n)V and C(n+1)V */
reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
}
base->COMBINE = reg;
reg = base->SYNCONF;
/* Use enhanced PWM synchronization method. Use PWM sync to update register values */
reg |= (FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_CNTINC_MASK | FTM_SYNCONF_INVC_MASK | FTM_SYNCONF_SWOC_MASK);
if (syncMethod & FTM_SYNC_SWSYNC_MASK)
{
/* Enable needed bits for software trigger to update registers with its buffer value */
reg |= (FTM_SYNCONF_SWRSTCNT_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWINVC_MASK |
FTM_SYNCONF_SWSOC_MASK | FTM_SYNCONF_SWOM_MASK);
}
if (syncMethod & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK))
{
/* Enable needed bits for hardware trigger to update registers with its buffer value */
reg |= (FTM_SYNCONF_HWRSTCNT_MASK | FTM_SYNCONF_HWWRBUF_MASK | FTM_SYNCONF_HWINVC_MASK |
FTM_SYNCONF_HWSOC_MASK | FTM_SYNCONF_HWOM_MASK);
/* Enable the appropriate hardware trigger that is used for PWM sync */
if (syncMethod & FTM_SYNC_TRIG0_MASK)
{
syncReg |= FTM_SYNC_TRIG0_MASK;
}
if (syncMethod & FTM_SYNC_TRIG1_MASK)
{
syncReg |= FTM_SYNC_TRIG1_MASK;
}
if (syncMethod & FTM_SYNC_TRIG2_MASK)
{
syncReg |= FTM_SYNC_TRIG2_MASK;
}
}
/* Write back values to the SYNC register */
base->SYNC = syncReg;
/* Write the PWM synch values to the SYNCONF register */
base->SYNCONF = reg;
}
static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints)
{
uint32_t chnlNumber = 0;
uint32_t reg = 0;
/* Need CNTINC bit to be 1 for CNTIN register to update with its buffer value on reload */
base->SYNCONF |= FTM_SYNCONF_CNTINC_MASK;
reg = base->COMBINE;
for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
{
/* Need SYNCEN bit to be 1 for CnV reg to update with its buffer value on reload */
reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
}
base->COMBINE = reg;
/* Set the reload points */
reg = base->PWMLOAD;
/* Enable the selected channel match reload points */
reg &= ~((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1);
reg |= (reloadPoints & ((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1));
#if defined(FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD) && (FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD)
/* Enable half cycle match as a reload point */
if (reloadPoints & kFTM_HalfCycMatch)
{
reg |= FTM_PWMLOAD_HCSEL_MASK;
}
else
{
reg &= ~FTM_PWMLOAD_HCSEL_MASK;
}
#endif /* FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD */
base->PWMLOAD = reg;
/* These reload points are used when counter is in up-down counting mode */
reg = base->SYNC;
if (reloadPoints & kFTM_CntMax)
{
/* Reload when counter turns from up to down */
reg |= FTM_SYNC_CNTMAX_MASK;
}
else
{
reg &= ~FTM_SYNC_CNTMAX_MASK;
}
if (reloadPoints & kFTM_CntMin)
{
/* Reload when counter turns from down to up */
reg |= FTM_SYNC_CNTMIN_MASK;
}
else
{
reg &= ~FTM_SYNC_CNTMIN_MASK;
}
base->SYNC = reg;
}
status_t FTM_Init(FTM_Type *base, const ftm_config_t *config)
{
assert(config);
uint32_t reg;
if (!(config->pwmSyncMode &
(FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK | FTM_SYNC_SWSYNC_MASK)))
{
/* Invalid PWM sync mode */
return kStatus_Fail;
}
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate the FTM clock*/
CLOCK_EnableClock(s_ftmClocks[FTM_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Configure the fault mode, enable FTM mode and disable write protection */
base->MODE = FTM_MODE_FAULTM(config->faultMode) | FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Configure the update mechanism for buffered registers */
FTM_SetPwmSync(base, config->pwmSyncMode);
/* Setup intermediate register reload points */
FTM_SetReloadPoints(base, config->reloadPoints);
/* Set the clock prescale factor */
base->SC = FTM_SC_PS(config->prescale);
/* Setup the counter operation */
base->CONF = (FTM_CONF_BDMMODE(config->bdmMode) | FTM_CONF_GTBEEN(config->useGlobalTimeBase));
/* Initial state of channel output */
base->OUTINIT = config->chnlInitState;
/* Channel polarity */
base->POL = config->chnlPolarity;
/* Set the external trigger sources */
base->EXTTRIG = config->extTriggers;
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER) && (FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER)
if (config->extTriggers & kFTM_ReloadInitTrigger)
{
base->CONF |= FTM_CONF_ITRIGR_MASK;
}
else
{
base->CONF &= ~FTM_CONF_ITRIGR_MASK;
}
#endif /* FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER */
/* FTM deadtime insertion control */
base->DEADTIME = (0u |
#if defined(FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE) && (FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE)
/* Has extended deadtime value register) */
FTM_DEADTIME_DTVALEX(config->deadTimeValue >> 6) |
#endif /* FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE */
FTM_DEADTIME_DTPS(config->deadTimePrescale) |
FTM_DEADTIME_DTVAL(config->deadTimeValue));
/* FTM fault filter value */
reg = base->FLTCTRL;
reg &= ~FTM_FLTCTRL_FFVAL_MASK;
reg |= FTM_FLTCTRL_FFVAL(config->faultFilterValue);
base->FLTCTRL = reg;
return kStatus_Success;
}
void FTM_Deinit(FTM_Type *base)
{
/* Set clock source to none to disable counter */
base->SC &= ~(FTM_SC_CLKS_MASK);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Gate the FTM clock */
CLOCK_DisableClock(s_ftmClocks[FTM_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void FTM_GetDefaultConfig(ftm_config_t *config)
{
assert(config);
/* Divide FTM clock by 1 */
config->prescale = kFTM_Prescale_Divide_1;
/* FTM behavior in BDM mode */
config->bdmMode = kFTM_BdmMode_0;
/* Software trigger will be used to update registers */
config->pwmSyncMode = kFTM_SoftwareTrigger;
/* No intermediate register load */
config->reloadPoints = 0;
/* Fault control disabled for all channels */
config->faultMode = kFTM_Fault_Disable;
/* Disable the fault filter */
config->faultFilterValue = 0;
/* Divide the system clock by 1 */
config->deadTimePrescale = kFTM_Deadtime_Prescale_1;
/* No counts are inserted */
config->deadTimeValue = 0;
/* No external trigger */
config->extTriggers = 0;
/* Initialization value is 0 for all channels */
config->chnlInitState = 0;
/* Active high polarity for all channels */
config->chnlPolarity = 0;
/* Use internal FTM counter as timebase */
config->useGlobalTimeBase = false;
}
status_t FTM_SetupPwm(FTM_Type *base,
const ftm_chnl_pwm_signal_param_t *chnlParams,
uint8_t numOfChnls,
ftm_pwm_mode_t mode,
uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)
{
assert(chnlParams);
assert(srcClock_Hz);
assert(pwmFreq_Hz);
assert(numOfChnls);
uint32_t mod, reg;
uint32_t ftmClock = (srcClock_Hz / (1U << (base->SC & FTM_SC_PS_MASK)));
uint16_t cnv, cnvFirstEdge;
uint8_t i;
switch (mode)
{
case kFTM_EdgeAlignedPwm:
case kFTM_CombinedPwm:
base->SC &= ~FTM_SC_CPWMS_MASK;
mod = (ftmClock / pwmFreq_Hz) - 1;
break;
case kFTM_CenterAlignedPwm:
base->SC |= FTM_SC_CPWMS_MASK;
mod = ftmClock / (pwmFreq_Hz * 2);
break;
default:
return kStatus_Fail;
}
/* Return an error in case we overflow the registers, probably would require changing
* clock source to get the desired frequency */
if (mod > 65535U)
{
return kStatus_Fail;
}
/* Set the PWM period */
base->MOD = mod;
/* Setup each FTM channel */
for (i = 0; i < numOfChnls; i++)
{
/* Return error if requested dutycycle is greater than the max allowed */
if (chnlParams->dutyCyclePercent > 100)
{
return kStatus_Fail;
}
if ((mode == kFTM_EdgeAlignedPwm) || (mode == kFTM_CenterAlignedPwm))
{
/* Clear the current mode and edge level bits */
reg = base->CONTROLS[chnlParams->chnlNumber].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
/* Setup the active level */
reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
/* Edge-aligned mode needs MSB to be 1, don't care for Center-aligned mode */
reg |= FTM_CnSC_MSB(1U);
/* Update the mode and edge level */
base->CONTROLS[chnlParams->chnlNumber].CnSC = reg;
if (chnlParams->dutyCyclePercent == 0)
{
/* Signal stays low */
cnv = 0;
}
else
{
cnv = (mod * chnlParams->dutyCyclePercent) / 100;
/* For 100% duty cycle */
if (cnv >= mod)
{
cnv = mod + 1;
}
}
base->CONTROLS[chnlParams->chnlNumber].CnV = cnv;
#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
/* Set to output mode */
FTM_SetPwmOutputEnable(base, chnlParams->chnlNumber, true);
#endif
}
else
{
/* This check is added for combined mode as the channel number should be the pair number */
if (chnlParams->chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
{
return kStatus_Fail;
}
/* Return error if requested value is greater than the max allowed */
if (chnlParams->firstEdgeDelayPercent > 100)
{
return kStatus_Fail;
}
/* Configure delay of the first edge */
if (chnlParams->firstEdgeDelayPercent == 0)
{
/* No delay for the first edge */
cnvFirstEdge = 0;
}
else
{
cnvFirstEdge = (mod * chnlParams->firstEdgeDelayPercent) / 100;
}
/* Configure dutycycle */
if (chnlParams->dutyCyclePercent == 0)
{
/* Signal stays low */
cnv = 0;
cnvFirstEdge = 0;
}
else
{
cnv = (mod * chnlParams->dutyCyclePercent) / 100;
/* For 100% duty cycle */
if (cnv >= mod)
{
cnv = mod + 1;
}
}
/* Clear the current mode and edge level bits for channel n */
reg = base->CONTROLS[chnlParams->chnlNumber * 2].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
/* Setup the active level for channel n */
reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
/* Update the mode and edge level for channel n */
base->CONTROLS[chnlParams->chnlNumber * 2].CnSC = reg;
/* Clear the current mode and edge level bits for channel n + 1 */
reg = base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
/* Setup the active level for channel n + 1 */
reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
/* Update the mode and edge level for channel n + 1*/
base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC = reg;
/* Set the combine bit for the channel pair */
base->COMBINE |=
(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlParams->chnlNumber)));
/* Set the channel pair values */
base->CONTROLS[chnlParams->chnlNumber * 2].CnV = cnvFirstEdge;
base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
/* Set to output mode */
FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2), true);
FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2 + 1), true);
#endif
}
chnlParams++;
}
return kStatus_Success;
}
void FTM_UpdatePwmDutycycle(FTM_Type *base,
ftm_chnl_t chnlNumber,
ftm_pwm_mode_t currentPwmMode,
uint8_t dutyCyclePercent)
{
uint16_t cnv, cnvFirstEdge = 0, mod;
mod = base->MOD;
if ((currentPwmMode == kFTM_EdgeAlignedPwm) || (currentPwmMode == kFTM_CenterAlignedPwm))
{
cnv = (mod * dutyCyclePercent) / 100;
/* For 100% duty cycle */
if (cnv >= mod)
{
cnv = mod + 1;
}
base->CONTROLS[chnlNumber].CnV = cnv;
}
else
{
/* This check is added for combined mode as the channel number should be the pair number */
if (chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
{
return;
}
cnv = (mod * dutyCyclePercent) / 100;
cnvFirstEdge = base->CONTROLS[chnlNumber * 2].CnV;
/* For 100% duty cycle */
if (cnv >= mod)
{
cnv = mod + 1;
}
base->CONTROLS[(chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
}
}
void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level)
{
uint32_t reg = base->CONTROLS[chnlNumber].CnSC;
/* Clear the field and write the new level value */
reg &= ~(FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
reg |= ((uint32_t)level << FTM_CnSC_ELSA_SHIFT) & (FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
base->CONTROLS[chnlNumber].CnSC = reg;
}
void FTM_SetupInputCapture(FTM_Type *base,
ftm_chnl_t chnlNumber,
ftm_input_capture_edge_t captureMode,
uint32_t filterValue)
{
uint32_t reg;
/* Clear the combine bit for the channel pair */
base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
/* Clear the dual edge capture mode because it's it's higher priority */
base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
/* Clear the quadrature decoder mode beacause it's higher priority */
base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
reg = base->CONTROLS[chnlNumber].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
reg |= captureMode;
/* Set the requested input capture mode */
base->CONTROLS[chnlNumber].CnSC = reg;
/* Input filter available only for channels 0, 1, 2, 3 */
if (chnlNumber < kFTM_Chnl_4)
{
reg = base->FILTER;
reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
base->FILTER = reg;
}
#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
/* Set to input mode */
FTM_SetPwmOutputEnable(base, chnlNumber, false);
#endif
}
void FTM_SetupOutputCompare(FTM_Type *base,
ftm_chnl_t chnlNumber,
ftm_output_compare_mode_t compareMode,
uint32_t compareValue)
{
uint32_t reg;
/* Clear the combine bit for the channel pair */
base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
/* Clear the dual edge capture mode because it's it's higher priority */
base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
/* Clear the quadrature decoder mode beacause it's higher priority */
base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
reg = base->CONTROLS[chnlNumber].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
reg |= compareMode;
/* Setup the channel output behaviour when a match occurs with the compare value */
base->CONTROLS[chnlNumber].CnSC = reg;
/* Set output on match to the requested level */
base->CONTROLS[chnlNumber].CnV = compareValue;
#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
/* Set to output mode */
FTM_SetPwmOutputEnable(base, chnlNumber, true);
#endif
}
void FTM_SetupDualEdgeCapture(FTM_Type *base,
ftm_chnl_t chnlPairNumber,
const ftm_dual_edge_capture_param_t *edgeParam,
uint32_t filterValue)
{
assert(edgeParam);
uint32_t reg;
reg = base->COMBINE;
/* Clear the combine bit for the channel pair */
reg &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
/* Enable the DECAPEN bit */
reg |= (1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
reg |= (1U << (FTM_COMBINE_DECAP0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
base->COMBINE = reg;
/* Setup the edge detection from channel n and n + 1 */
reg = base->CONTROLS[chnlPairNumber * 2].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->currChanEdgeMode);
base->CONTROLS[chnlPairNumber * 2].CnSC = reg;
reg = base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC;
reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->nextChanEdgeMode);
base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC = reg;
/* Input filter available only for channels 0, 1, 2, 3 */
if (chnlPairNumber < kFTM_Chnl_4)
{
reg = base->FILTER;
reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
base->FILTER = reg;
}
#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
/* Set to input mode */
FTM_SetPwmOutputEnable(base, chnlPairNumber, false);
#endif
}
void FTM_SetupQuadDecode(FTM_Type *base,
const ftm_phase_params_t *phaseAParams,
const ftm_phase_params_t *phaseBParams,
ftm_quad_decode_mode_t quadMode)
{
assert(phaseAParams);
assert(phaseBParams);
uint32_t reg;
/* Set Phase A filter value if phase filter is enabled */
if (phaseAParams->enablePhaseFilter)
{
reg = base->FILTER;
reg &= ~(FTM_FILTER_CH0FVAL_MASK);
reg |= FTM_FILTER_CH0FVAL(phaseAParams->phaseFilterVal);
base->FILTER = reg;
}
/* Set Phase B filter value if phase filter is enabled */
if (phaseBParams->enablePhaseFilter)
{
reg = base->FILTER;
reg &= ~(FTM_FILTER_CH1FVAL_MASK);
reg |= FTM_FILTER_CH1FVAL(phaseBParams->phaseFilterVal);
base->FILTER = reg;
}
/* Set Quadrature decode properties */
reg = base->QDCTRL;
reg &= ~(FTM_QDCTRL_QUADMODE_MASK | FTM_QDCTRL_PHAFLTREN_MASK | FTM_QDCTRL_PHBFLTREN_MASK | FTM_QDCTRL_PHAPOL_MASK |
FTM_QDCTRL_PHBPOL_MASK);
reg |= (FTM_QDCTRL_QUADMODE(quadMode) | FTM_QDCTRL_PHAFLTREN(phaseAParams->enablePhaseFilter) |
FTM_QDCTRL_PHBFLTREN(phaseBParams->enablePhaseFilter) | FTM_QDCTRL_PHAPOL(phaseAParams->phasePolarity) |
FTM_QDCTRL_PHBPOL(phaseBParams->phasePolarity));
base->QDCTRL = reg;
/* Enable Quad decode */
base->QDCTRL |= FTM_QDCTRL_QUADEN_MASK;
}
void FTM_SetupFault(FTM_Type *base, ftm_fault_input_t faultNumber, const ftm_fault_param_t *faultParams)
{
assert(faultParams);
uint32_t reg;
reg = base->FLTCTRL;
if (faultParams->enableFaultInput)
{
/* Enable the fault input */
reg |= (FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
}
else
{
/* Disable the fault input */
reg &= ~(FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
}
if (faultParams->useFaultFilter)
{
/* Enable the fault filter */
reg |= (FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
}
else
{
/* Disable the fault filter */
reg &= ~(FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
}
base->FLTCTRL = reg;
if (faultParams->faultLevel)
{
/* Active low polarity for the fault input pin */
base->FLTPOL |= (1U << faultNumber);
}
else
{
/* Active high polarity for the fault input pin */
base->FLTPOL &= ~(1U << faultNumber);
}
}
void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask)
{
uint32_t chnlInts = (mask & 0xFFU);
uint8_t chnlNumber = 0;
/* Enable the timer overflow interrupt */
if (mask & kFTM_TimeOverflowInterruptEnable)
{
base->SC |= FTM_SC_TOIE_MASK;
}
/* Enable the fault interrupt */
if (mask & kFTM_FaultInterruptEnable)
{
base->MODE |= FTM_MODE_FAULTIE_MASK;
}
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
/* Enable the reload interrupt available only on certain SoC's */
if (mask & kFTM_ReloadInterruptEnable)
{
base->SC |= FTM_SC_RIE_MASK;
}
#endif
/* Enable the channel interrupts */
while (chnlInts)
{
if (chnlInts & 0x1)
{
base->CONTROLS[chnlNumber].CnSC |= FTM_CnSC_CHIE_MASK;
}
chnlNumber++;
chnlInts = chnlInts >> 1U;
}
}
void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask)
{
uint32_t chnlInts = (mask & 0xFF);
uint8_t chnlNumber = 0;
/* Disable the timer overflow interrupt */
if (mask & kFTM_TimeOverflowInterruptEnable)
{
base->SC &= ~FTM_SC_TOIE_MASK;
}
/* Disable the fault interrupt */
if (mask & kFTM_FaultInterruptEnable)
{
base->MODE &= ~FTM_MODE_FAULTIE_MASK;
}
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
/* Disable the reload interrupt available only on certain SoC's */
if (mask & kFTM_ReloadInterruptEnable)
{
base->SC &= ~FTM_SC_RIE_MASK;
}
#endif
/* Disable the channel interrupts */
while (chnlInts)
{
if (chnlInts & 0x1)
{
base->CONTROLS[chnlNumber].CnSC &= ~FTM_CnSC_CHIE_MASK;
}
chnlNumber++;
chnlInts = chnlInts >> 1U;
}
}
uint32_t FTM_GetEnabledInterrupts(FTM_Type *base)
{
uint32_t enabledInterrupts = 0;
int8_t chnlCount = FSL_FEATURE_FTM_CHANNEL_COUNTn(base);
/* The CHANNEL_COUNT macro returns -1 if it cannot match the FTM instance */
assert(chnlCount != -1);
/* Check if timer overflow interrupt is enabled */
if (base->SC & FTM_SC_TOIE_MASK)
{
enabledInterrupts |= kFTM_TimeOverflowInterruptEnable;
}
/* Check if fault interrupt is enabled */
if (base->MODE & FTM_MODE_FAULTIE_MASK)
{
enabledInterrupts |= kFTM_FaultInterruptEnable;
}
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
/* Check if the reload interrupt is enabled */
if (base->SC & FTM_SC_RIE_MASK)
{
enabledInterrupts |= kFTM_ReloadInterruptEnable;
}
#endif
/* Check if the channel interrupts are enabled */
while (chnlCount > 0)
{
chnlCount--;
if (base->CONTROLS[chnlCount].CnSC & FTM_CnSC_CHIE_MASK)
{
enabledInterrupts |= (1U << chnlCount);
}
}
return enabledInterrupts;
}
uint32_t FTM_GetStatusFlags(FTM_Type *base)
{
uint32_t statusFlags = 0;
/* Check the timer flag */
if (base->SC & FTM_SC_TOF_MASK)
{
statusFlags |= kFTM_TimeOverflowFlag;
}
/* Check fault flag */
if (base->FMS & FTM_FMS_FAULTF_MASK)
{
statusFlags |= kFTM_FaultFlag;
}
/* Check channel trigger flag */
if (base->EXTTRIG & FTM_EXTTRIG_TRIGF_MASK)
{
statusFlags |= kFTM_ChnlTriggerFlag;
}
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
/* Check reload flag */
if (base->SC & FTM_SC_RF_MASK)
{
statusFlags |= kFTM_ReloadFlag;
}
#endif
/* Lower 8 bits contain the channel status flags */
statusFlags |= (base->STATUS & 0xFFU);
return statusFlags;
}
void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask)
{
/* Clear the timer overflow flag by writing a 0 to the bit while it is set */
if (mask & kFTM_TimeOverflowFlag)
{
base->SC &= ~FTM_SC_TOF_MASK;
}
/* Clear fault flag by writing a 0 to the bit while it is set */
if (mask & kFTM_FaultFlag)
{
base->FMS &= ~FTM_FMS_FAULTF_MASK;
}
/* Clear channel trigger flag */
if (mask & kFTM_ChnlTriggerFlag)
{
base->EXTTRIG &= ~FTM_EXTTRIG_TRIGF_MASK;
}
#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
/* Check reload flag by writing a 0 to the bit while it is set */
if (mask & kFTM_ReloadFlag)
{
base->SC &= ~FTM_SC_RF_MASK;
}
#endif
/* Clear the channel status flags by writing a 0 to the bit */
base->STATUS &= ~(mask & 0xFFU);
}