112 lines
3.9 KiB
C
112 lines
3.9 KiB
C
/*
|
|
* Copyright 2023 Siemens
|
|
*
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
|
* and license this software and its documentation for any purpose, provided
|
|
* that existing copyright notices are retained in all copies and that this
|
|
* notice is included verbatim in any distributions. No written agreement,
|
|
* license, or royalty fee is required for any of the authorized uses.
|
|
* Modifications to this software may be copyrighted by their authors
|
|
* and need not follow the licensing terms described here, provided that
|
|
* the new terms are clearly indicated on the first page of each file where
|
|
* they apply.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the BSD License. This program is distributed in the hope that
|
|
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
|
|
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
|
|
* A PARTICULAR PURPOSE. A copy of this license is available at
|
|
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
|
|
* incorporated in the source code or documentation are not subject to
|
|
* the BSD License and may only be used or replicated with the express
|
|
* permission of Red Hat, Inc.
|
|
*/
|
|
|
|
/******************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
******************************************************************/
|
|
|
|
/* Based on newlib/libm/mathfp/sf_logarithm.c in Newlib. */
|
|
|
|
#include "amdgcnmach.h"
|
|
|
|
v64si v64sf_finitef_aux (v64sf, v64si);
|
|
v64si v64sf_isnanf_aux (v64sf, v64si);
|
|
|
|
static const float a[] = { -0.64124943423745581147e+02,
|
|
0.16383943563021534222e+02,
|
|
-0.78956112887481257267 };
|
|
static const float b[] = { -0.76949932108494879777e+03,
|
|
0.31203222091924532844e+03,
|
|
-0.35667977739034646171e+02 };
|
|
static const float C1 = 0.693145752;
|
|
static const float C2 = 1.428606820e-06;
|
|
|
|
#if defined (__has_builtin) \
|
|
&& __has_builtin (__builtin_gcn_frexpvf_mant) \
|
|
&& __has_builtin (__builtin_gcn_frexpvf_exp)
|
|
|
|
DEF_VS_MATH_FUNC (v64sf, logf, v64sf x)
|
|
{
|
|
FUNCTION_INIT (v64sf);
|
|
|
|
/* Check for domain/range errors here. */
|
|
VECTOR_IF (x == 0.0f, cond)
|
|
errno = ERANGE;
|
|
VECTOR_RETURN (VECTOR_INIT (-z_infinity_f.f), cond);
|
|
VECTOR_ELSEIF (x < 0.0f, cond)
|
|
errno = EDOM;
|
|
VECTOR_RETURN (VECTOR_INIT (z_notanum_f.f), cond);
|
|
VECTOR_ELSEIF (~v64sf_finitef_aux (x, __mask), cond)
|
|
VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_notanum_f.f),
|
|
VECTOR_INIT (z_infinity_f.f),
|
|
v64sf_isnanf_aux (x, __mask)),
|
|
cond);
|
|
VECTOR_ENDIF
|
|
|
|
/* Get the exponent and mantissa where x = f * 2^N. */
|
|
v64sf f = __builtin_gcn_frexpvf_mant (x);
|
|
v64si N = __builtin_gcn_frexpvf_exp (x);
|
|
|
|
v64sf z = f - 0.5f;
|
|
|
|
VECTOR_IF (f > (float) __SQRT_HALF, cond)
|
|
VECTOR_COND_MOVE (z, (z - 0.5f) / (f * 0.5f + 0.5f), cond);
|
|
VECTOR_ELSE (cond)
|
|
VECTOR_COND_MOVE (N, N - 1, cond);
|
|
VECTOR_COND_MOVE (z, z / (z * 0.5f + 0.5f), cond);
|
|
VECTOR_ENDIF
|
|
|
|
v64sf w = z * z;
|
|
|
|
/* Use Newton's method with 4 terms. */
|
|
z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]);
|
|
|
|
v64sf Nf = __builtin_convertvector(N, v64sf);
|
|
VECTOR_COND_MOVE (z, (Nf * C2 + z) + Nf * C1, N != 0);
|
|
|
|
VECTOR_RETURN (z, NO_COND);
|
|
|
|
FUNCTION_RETURN;
|
|
}
|
|
|
|
DEF_VARIANTS (logf, sf, sf)
|
|
|
|
DEF_VS_MATH_FUNC (v64sf, log1pf, v64sf x)
|
|
{
|
|
/* TODO: Implement algorithm with better precision. */
|
|
return v64sf_logf_aux (1 + x, __mask);
|
|
}
|
|
|
|
DEF_VARIANTS (log1pf, sf, sf)
|
|
|
|
#endif
|