newlib-cygwin/newlib/libm/machine/amdgcn/v64df_log.c

112 lines
3.9 KiB
C

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/s_logarithm.c in Newlib. */
#include "amdgcnmach.h"
v64si v64df_finite (v64df);
v64si v64df_isnan (v64df);
static const double a[] = { -0.64124943423745581147e+02,
0.16383943563021534222e+02,
-0.78956112887481257267 };
static const double b[] = { -0.76949932108494879777e+03,
0.31203222091924532844e+03,
-0.35667977739034646171e+02 };
static const double C1 = 22713.0 / 32768.0;
static const double C2 = 1.428606820309417232e-06;
#if defined (__has_builtin) \
&& __has_builtin (__builtin_gcn_frexpv_mant) \
&& __has_builtin (__builtin_gcn_frexpv_exp) \
DEF_VD_MATH_FUNC (v64df, log, v64df x)
{
FUNCTION_INIT (v64df);
/* Check for domain/range errors here. */
VECTOR_IF (x == 0.0, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_INIT (-z_infinity.d), cond);
VECTOR_ELSEIF (x < 0.0, cond)
errno = EDOM;
VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond);
VECTOR_ELSEIF (__builtin_convertvector (~v64df_finite (x), v64di), cond)
VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_notanum.d),
VECTOR_INIT (z_infinity.d),
v64df_isnan (x)),
cond);
VECTOR_ENDIF
/* Get the exponent and mantissa where x = f * 2^N. */
v64df f = __builtin_gcn_frexpv_mant (x);
v64si N = __builtin_gcn_frexpv_exp (x);
v64df z = f - 0.5;
VECTOR_IF (f > __SQRT_HALF, cond)
VECTOR_COND_MOVE (z, (z - 0.5) / (f * 0.5 + 0.5), cond);
VECTOR_ELSE (cond)
VECTOR_COND_MOVE (N, N - 1, cond);
VECTOR_COND_MOVE (z, z / (z * 0.5 + 0.5), cond);
VECTOR_ENDIF
v64df w = z * z;
/* Use Newton's method with 4 terms. */
z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]);
v64df Nf = __builtin_convertvector (N, v64df);
VECTOR_COND_MOVE (z, (Nf * C2 + z) + Nf * C1, N != 0);
VECTOR_RETURN (z, NO_COND);
FUNCTION_RETURN;
}
DEF_VARIANTS (log, df, df)
DEF_VD_MATH_FUNC (v64df, log1p, v64df x)
{
/* TODO: Implement algorithm with better precision. */
return v64df_log_aux (1 + x, __mask);
}
DEF_VARIANTS (log1p, df, df)
#endif