162 lines
5.3 KiB
C
162 lines
5.3 KiB
C
/*
|
|
* Copyright 2023 Siemens
|
|
*
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
|
* and license this software and its documentation for any purpose, provided
|
|
* that existing copyright notices are retained in all copies and that this
|
|
* notice is included verbatim in any distributions. No written agreement,
|
|
* license, or royalty fee is required for any of the authorized uses.
|
|
* Modifications to this software may be copyrighted by their authors
|
|
* and need not follow the licensing terms described here, provided that
|
|
* the new terms are clearly indicated on the first page of each file where
|
|
* they apply.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the BSD License. This program is distributed in the hope that
|
|
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
|
|
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
|
|
* A PARTICULAR PURPOSE. A copy of this license is available at
|
|
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
|
|
* incorporated in the source code or documentation are not subject to
|
|
* the BSD License and may only be used or replicated with the express
|
|
* permission of Red Hat, Inc.
|
|
*/
|
|
|
|
/******************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
******************************************************************/
|
|
|
|
/* Based on newlib/libm/mathfp/s_atangent.c in Newlib. */
|
|
|
|
#include <float.h>
|
|
#include "amdgcnmach.h"
|
|
|
|
#if defined (__has_builtin) \
|
|
&& __has_builtin (__builtin_gcn_fabsv) \
|
|
&& __has_builtin (__builtin_gcn_frexpv_exp)
|
|
|
|
DEF_VD_MATH_FUNC (v64df, atangent, v64df x, v64df v, v64df u, int arctan2)
|
|
{
|
|
static const double ROOT3 = 1.73205080756887729353;
|
|
static const double a[] = { 0.0, 0.52359877559829887308, 1.57079632679489661923,
|
|
1.04719755119659774615 };
|
|
static const double q[] = { 0.41066306682575781263e+2,
|
|
0.86157349597130242515e+2,
|
|
0.59578436142597344465e+2,
|
|
0.15024001160028576121e+2 };
|
|
static const double p[] = { -0.13688768894191926929e+2,
|
|
-0.20505855195861651981e+2,
|
|
-0.84946240351320683534e+1,
|
|
-0.83758299368150059274 };
|
|
static const float z_rooteps = 7.4505859692e-9;
|
|
|
|
FUNCTION_INIT (v64df);
|
|
|
|
v64df zero = VECTOR_INIT (0.0);
|
|
v64df pi = VECTOR_INIT (__PI);
|
|
v64df pi_over_two = VECTOR_INIT (__PI_OVER_TWO);
|
|
v64df res;
|
|
v64si branch = VECTOR_INIT (0);
|
|
|
|
/* Preparation for calculating arctan2. */
|
|
if (arctan2)
|
|
{
|
|
VECTOR_IF (u == 0.0, cond)
|
|
VECTOR_IF2 (v == 0.0, cond2, cond)
|
|
errno = ERANGE;
|
|
VECTOR_RETURN (VECTOR_INIT (0.0), cond2);
|
|
VECTOR_ELSE2 (cond2, cond)
|
|
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
|
|
VECTOR_COND_MOVE (res, pi_over_two, cond2);
|
|
VECTOR_ENDIF
|
|
VECTOR_ENDIF
|
|
|
|
VECTOR_IF (~branch, cond)
|
|
/* Get the exponent values of the inputs. */
|
|
v64si expv = __builtin_gcn_frexpv_exp (v);
|
|
v64si expu = __builtin_gcn_frexpv_exp (u);
|
|
|
|
/* See if a divide will overflow. */
|
|
v64si e = expv - expu;
|
|
|
|
VECTOR_IF2 (e > DBL_MAX_EXP, cond2, cond)
|
|
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
|
|
VECTOR_COND_MOVE (res, pi_over_two, cond2);
|
|
VECTOR_ENDIF
|
|
|
|
/* Also check for underflow. */
|
|
VECTOR_IF2 (e < DBL_MIN_EXP, cond2, cond)
|
|
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
|
|
VECTOR_COND_MOVE (res, zero, cond2);
|
|
VECTOR_ENDIF
|
|
VECTOR_ENDIF
|
|
}
|
|
|
|
VECTOR_IF (~branch, cond)
|
|
v64df f;
|
|
v64si N = VECTOR_INIT (0);
|
|
|
|
if (arctan2)
|
|
f = __builtin_gcn_fabsv (v / u);
|
|
else
|
|
f = __builtin_gcn_fabsv (x);
|
|
|
|
VECTOR_IF2 (__builtin_convertvector(f > 1.0, v64si), cond2, cond)
|
|
VECTOR_COND_MOVE (f, 1.0 / f, cond2);
|
|
VECTOR_COND_MOVE (N, VECTOR_INIT (2), cond2);
|
|
VECTOR_ENDIF
|
|
|
|
VECTOR_IF2 (__builtin_convertvector(f > (2.0 - ROOT3), v64si), cond2, cond)
|
|
double A = ROOT3 - 1.0;
|
|
VECTOR_COND_MOVE (f, (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f),
|
|
cond2);
|
|
N += cond2 & 1;
|
|
VECTOR_ENDIF
|
|
|
|
/* Check for values that are too small. */
|
|
VECTOR_IF2 (__builtin_convertvector((-z_rooteps < f) & (f < z_rooteps), v64si), cond2, cond)
|
|
VECTOR_COND_MOVE (res, f, cond2);
|
|
|
|
/* Calculate the Taylor series. */
|
|
VECTOR_ELSE2 (cond2, cond)
|
|
v64df g = f * f;
|
|
v64df P = (((p[3] * g + p[2]) * g + p[1]) * g + p[0]) * g;
|
|
v64df Q = (((g + q[3]) * g + q[2]) * g + q[1]) * g + q[0];
|
|
v64df R = P / Q;
|
|
|
|
VECTOR_COND_MOVE (res, f + f * R, cond2);
|
|
VECTOR_ENDIF
|
|
|
|
VECTOR_COND_MOVE (res, -res, cond & (N > 1));
|
|
|
|
res += VECTOR_MERGE (VECTOR_INIT (a[1]), zero, cond & (N == 1));
|
|
res += VECTOR_MERGE (VECTOR_INIT (a[2]), zero, cond & (N == 2));
|
|
res += VECTOR_MERGE (VECTOR_INIT (a[3]), zero, cond & (N == 3));
|
|
VECTOR_ENDIF
|
|
|
|
if (arctan2)
|
|
{
|
|
/*if (u < 0.0)*/
|
|
VECTOR_COND_MOVE (res, pi - res, u < 0.0);
|
|
/*if (v < 0.0)*/
|
|
VECTOR_COND_MOVE (res, -res, v < 0.0);
|
|
}
|
|
/*else if (x < 0.0) */
|
|
else
|
|
VECTOR_COND_MOVE (res, -res, x < 0.0);
|
|
|
|
VECTOR_RETURN (res, NO_COND);
|
|
|
|
FUNCTION_RETURN;
|
|
}
|
|
|
|
#endif
|