4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-15 19:09:58 +08:00
Christopher Faylor 2d1d1eb1e4 * cygtls.h (_threadinfo::call): Remove regparm declaration to work around
compiler bug.
* autoload.cc (TryEnterCriticalSection): Remove.
* dcrt0.cc (dll_crt0_0): Delete inappropriate setting of _my_tls.stackptr to
NULL since it has really bad consequences.  Make 'si' an automatic variable.
* cygtls.cc (_threadinfo::init_thread): Correct thinko which caused thread list
to be allocated every time.
* cygtls.h (CYGTLS_PADSIZE): Define as const int.
* sync.h: Make multiple inclusion safe.
(muto::next): Eliminate.
(muto::exiting_thread): New variable.
(muto::set_exiting_thread): New function.
(new_muto): Change to use different section for mutos since c++ give
inexplicable warning in some cases otherwise.
(new_muto1): Ditto.
* dcrt0.cc (do_exit): Call muto::set_exiting_thread here.
* sync.cc (muto_start): Eliminate.
(muto::acquire): Always give exiting thread a lock.  Never give thread a lock
if exiting.
(muto::release): Ditto for releasing.
* dtable.cc (dtable::init_lock): Unline function and define here.
* dtable.h (lock_cs): Define as a muto since critical sections seem to work
oddly on Windows Me.
(lock): Accommodate switch to muto.
(unlock): Ditto.
* exceptions.cc (setup_handler): Don't worry about acquiring mutos since that
hasn't mattered for a long time.
(signal_exit): Ditto: muto stuff will be handled automatically on exit now.
* Makefile.in (DLL_IMPORTS): Link advapi32 to ensure proper DLL initialization.
* autoload.cc (RegCloseKey): Arbitrarily choose this function as a "seed" to
pull the advapi32 link library in.  So, comment out the autoloading.
* cygtls.cc (_threadinfo::init_thread): Just clear CYGTLS_PADSIZE.
(_threadinfo::remove): Add debugging.
(_threadinfo::find_tls): Ditto.
* cygtls.h (_threadinfo::padding): Make zero length (for now?).
* dcrt0.cc (dll_crt0_0): Move more initialization here from dll_crt0_1.
(dll_crt0_1): See above.
* dtable.h (dtable::lock): Remove commented out critical section locking.
* dtable.h (dtable::init_lock): Remove commented out critical section locking.
* dtable.h (dtable::unlock): Remove commented out critical section locking.
* exceptions.cc (interruptible): bool'ize.
* init.cc (threadfunc_fe): Revert to storing threadfunc at stack bottom.
(munge_threadfunc): Ditto.  Avoid adding overhead to calibration_thread.
(prime_threads): Don't initialize tls stuff.
(dll_entry): Make minor change to initialization order.
* tlsoffsets.h: Regenerate.
* sigproc.cc (wait_sig): Add sanity check for end of process thread exit.
* select.h: Make minor formatting change.
* Makefile.in: Add still more -fomit-frame-pointer functions.
* dtable.h (dtable::lock): New function.
(dtable::unlock): New function.
(dtable::init_lock): New function.
* cygheap.h (HEAP_TLS): Declare new enum value.
(init_cygheap::threadlist): Declare new array.
(init_cygheap::sthreads): Declare new variable.
(cygheap_fdmanip::~cygheap_fdmanip): Use new dtable lock/unlock functions.
(cygheap_fdnew::cygheap_fdnew): Ditto.
(cygheap_fdget::cygheap_fdget): Ditto.
* dtable.cc (dtable_init): Initialize fdtab critical section.
(dtable::fixup_after_fork): Ditto.
(dtable::fixup_after_exec): Ditto.
(dtable::dup2): Use lock/unlock calls to protect access to fdtab.
(dtable::find_fifo): Ditto.
(dtable::fixup_before_fork): Ditto.
(dtable::fixup_before_exec): Ditto.
(dtable::set_file_pointers_for_exec): Ditto.
(dtable::vfork_child_dup): Ditto.
(dtable::vfork_parent_restore): Ditto.
* syscalls.cc (close_all_files): Ditto.
* sync.h (muto::acquired): Declare new function.
(new_muto1): Declare new macro used to specify name of muto storage.
* sync.cc (muto::acquired): Define new function.
* cygthread.cc (cygthread::stub): Remove signal chain removal call since it is
handled during initialization now.
* cygthread.cc (cygthread::simplestub): Remove signal chain removal call since
it is handled during initialization now.
* cygtls.cc (sentry): New class used for locking.  Use throughout.
(_threadinfo::reset_exception): Don't pop stack.
(_threadinfo::find_tls): Move from exceptions.cc.
(_threadinfo::init_thread): Initialize array of threads rather than linked
list.  Take second argument indicating thread function for this thread.
(_threadinfo::remove): Search thread array rather than linked list.  Use sentry
to lock.  Only unlock if we got the lock.
(_threadinfo::find_tls): Ditto for first two.
(handle_threadlist_exception): Handle exceptions when manipulating the thread
list in case of premature thread termination.
(_threadinfo::init_threadlist_exceptions): Ditto.
* cygtls.h (TLS_STACK_SIZE): Decrease size.
(_threadinfo::padding): Add element to avoid overwriting lower part of stack.
(_threadinfo::remove): Add a "wait" argument to control how long we wait for a
lock before removing.
* exceptions.cc (init_exception_handler): Make global.  Take argument to
control exception handler being set.
(ctrl_c_handler): Wait forever when removing self from signal chain.
(_threadinfo::find_tls): Move to cygtls.cc.
(sig_handle): Reorganize detection for thread-specific signals.
* heap.cc (heap_init): Rework slightly.  Make fatal error more verbose.  Remove
malloc initialization since it can't happen during dll attach.
* init.cc (search_for): Move address to search for on stack here.
(threadfunc_ix): Ditto for stack offset.  Make shared so that stack walk
potentially only has to be done once when cygwin processes are running.
(threadfunc_fe): Use standard tls to store thread function (may change back
later).
(calibration_thread): New function.  Potentially called to find threadfunc_ix.
(munge_threadfunc): Search for "search_for" value on stack.  Output warning
when thread func not found on stack.  Use standard tls to store thread
function.
(prime_threads): New function.  Called to prime thread front end.
(dll_entry): Call dll_crt0_0 here when DLL_PROCESS_ATTACH.  Call prime_threads
here.  Try to remove thread from signal list here.
* sigproc.cc (wait_sig): Initialize threadlist exception stuff here.
* thread.cc (pthread::exit): Pass argument to signal list remove function.
* thread.h: Remove obsolete *ResourceLock defines.
* tlsoffsets.h: Regenerate.
* winsup.h (spf): Define temporary debug macro to be deleted later.
* dcrt0.cc (dll_crt0_0): New function, called during DLL initialization.
Mainly consists of code pulled from dll_crt0_1.
(dll_crt0_1): See above.
(_dll_crt0): Wait for initial calibration thread to complete, if appropriate.
Move some stuff to dll_crt0_0.
(initialize_main_tls): Accommodate argument change to
_thread_info::init_thread.
* fork.cc (fork_child): Ditto.
(sync_with_child): Fix debug message.
* external.cc (cygwin_internal): Remove special considerations for
uninitialized dll since initialization happens during dll attach now.
* dlfcn.cc (dlopen): Remove obsolete *ResourceLock calls.
(dlclose): Ditto.
* cygheap.h (init_cygheap::close_ctty): Declare new function.
* cygheap.cc (init_cygheap::close_ctty): Define new function.
* syscalls.cc (close_all_files): Use close_ctty.
(setsid): Ditto.
* cygthread.cc (cygthread::stub): Remove exception initialization.
* cygthread.cc (cygthread::stub): Remove exception initialization.
(cygthread::simplestub): Ditto.
* thread.cc (pthread::thread_init_wrapper): Ditto.
* cygtls.cc (_last_thread): Make static.
(_threadinfo::call2): Initialize exception handler here.
(_threadinfo::find_tls): Move here.
* exceptions.cc (_threadinfo::find_tls): Move.
* dcrt0.cc (__api_fatal): Add prefix info to message here rather than including
it in every call to function.
* winsup.h (api_fatal): Accommodate above change.
* debug.cc (add_handle): Don't do anything if cygheap not around.
(mark_closed): Ditto.
* dll_init.cc (dll_list::detach): Fix debug output.
* fork.cc (sync_with_child): Ditto.
(vfork): Improve debug output.
* heap.cc (heap_init): Ditto.
* exceptions.cc (try_to_debug): Clarify message when debugger attaches.
2004-01-14 15:45:37 +00:00

158 lines
4.3 KiB
C++

/* sync.cc: Synchronization functions for cygwin.
This file implements the methods for controlling the "muto" class
which is intended to operate similarly to a mutex but attempts to
avoid making expensive calls to the kernel.
Copyright 2000, 2001, 2002 Red Hat, Inc.
Written by Christopher Faylor <cgf@cygnus.com>
This file is part of Cygwin.
This software is a copyrighted work licensed under the terms of the
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
details. */
#include "winsup.h"
#include <stdlib.h>
#include <time.h>
#include <sys/wait.h>
#include <errno.h>
#include <stdlib.h>
#include "sync.h"
#include "security.h"
#undef WaitForSingleObject
DWORD NO_COPY muto::exiting_thread;
/* Constructor */
muto *
muto::init (const char *s)
{
waiters = -1;
/* Create event which is used in the fallback case when blocking is necessary */
if (!(bruteforce = CreateEvent (&sec_none_nih, FALSE, FALSE, NULL)))
{
DWORD oerr = GetLastError ();
SetLastError (oerr);
return NULL;
}
name = s;
return this;
}
#if 0 /* FIXME: Do we need this? mutos aren't destroyed until process exit */
/* Destructor (racy?) */
muto::~muto ()
{
while (visits)
release ();
HANDLE h = bruteforce;
bruteforce = NULL;
/* Just need to close the event handle */
if (h)
CloseHandle (h);
}
#endif
/* Acquire the lock. Argument is the number of milliseconds to wait for
the lock. Multiple visits from the same thread are allowed and should
be handled correctly.
Note: The goal here is to minimize, as much as possible, calls to the
OS. Hence the use of InterlockedIncrement, etc., rather than (much) more
expensive OS mutexes. */
int
muto::acquire (DWORD ms)
{
DWORD this_tid = GetCurrentThreadId ();
if (exiting_thread)
return this_tid == exiting_thread;
if (tid != this_tid)
{
/* Increment the waiters part of the class. Need to do this first to
avoid potential races. */
LONG was_waiting = InterlockedIncrement (&waiters);
/* This is deceptively simple. Basically, it allows multiple attempts to
lock the same muto to succeed without attempting to manipulate sync.
If the muto is already locked then this thread will wait for ms until
it is signalled by muto::release. Then it will attempt to grab the
sync field. If it succeeds, then this thread owns the muto.
There is a pathological condition where a thread times out waiting for
bruteforce but the release code triggers the bruteforce event. In this
case, it is possible for a thread which is going to wait for bruteforce
to wake up immediately. It will then attempt to grab sync but will fail
and go back to waiting. */
if (tid != this_tid && (was_waiting || InterlockedExchange (&sync, 1) != 0))
{
switch (WaitForSingleObject (bruteforce, ms))
{
case WAIT_OBJECT_0:
goto gotit;
break;
default:
InterlockedDecrement (&waiters);
return 0; /* failed. */
}
}
}
gotit:
tid = this_tid; /* register this thread. */
return ++visits; /* Increment visit count. */
}
/* Return the muto lock. Needs to be called once per every acquire. */
int
muto::release ()
{
DWORD this_tid = GetCurrentThreadId ();
if (exiting_thread)
return this_tid == exiting_thread;
if (tid != this_tid || !visits)
{
SetLastError (ERROR_NOT_OWNER); /* Didn't have the lock. */
return 0; /* failed. */
}
/* FIXME: Need to check that other thread has not exited, too. */
if (!--visits)
{
tid = 0; /* We were the last unlocker. */
(void) InterlockedExchange (&sync, 0); /* Reset trigger. */
/* This thread had incremented waiters but had never decremented it.
Decrement it now. If it is >= 0 then there are possibly other
threads waiting for the lock, so trigger bruteforce. */
if (InterlockedDecrement (&waiters) >= 0)
(void) SetEvent (bruteforce); /* Wake up one of the waiting threads */
}
return 1; /* success. */
}
bool
muto::acquired ()
{
return tid == GetCurrentThreadId ();
}
/* Call only when we're exiting. This is not thread safe. */
void
muto::reset ()
{
visits = sync = tid = 0;
InterlockedExchange (&waiters, -1);
if (bruteforce)
{
CloseHandle (bruteforce);
bruteforce = CreateEvent (&sec_none_nih, FALSE, FALSE, name);
}
}