4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-19 04:49:25 +08:00
Sebastian Huber 830418fb7a Move timeval macros to <sys/time.h>
In FreeBSD, NetBSD, and OpenBSD these macros are defined in
<sys/time.h>.
2020-10-14 10:54:04 -04:00

449 lines
11 KiB
C

/* time.h -- An implementation of the standard Unix <sys/time.h> file.
Written by Geoffrey Noer <noer@cygnus.com>
Public domain; no rights reserved. */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)time.h 8.5 (Berkeley) 5/4/95
* $FreeBSD: head/sys/sys/time.h 346176 2019-04-13 04:46:35Z imp $
*/
#ifndef _SYS_TIME_H_
#define _SYS_TIME_H_
#include <_ansi.h>
#include <sys/cdefs.h>
#include <sys/_timeval.h>
#include <sys/types.h>
#include <sys/timespec.h>
#if __BSD_VISIBLE || __POSIX_VISIBLE >= 200112 || __XSI_VISIBLE
#include <sys/select.h>
#endif
struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of dst correction */
};
#define DST_NONE 0 /* not on dst */
#define DST_USA 1 /* USA style dst */
#define DST_AUST 2 /* Australian style dst */
#define DST_WET 3 /* Western European dst */
#define DST_MET 4 /* Middle European dst */
#define DST_EET 5 /* Eastern European dst */
#define DST_CAN 6 /* Canada */
#if __BSD_VISIBLE
struct bintime {
time_t sec;
uint64_t frac;
};
static __inline void
bintime_addx(struct bintime *_bt, uint64_t _x)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac += _x;
if (_u > _bt->frac)
_bt->sec++;
}
static __inline void
bintime_add(struct bintime *_bt, const struct bintime *_bt2)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac += _bt2->frac;
if (_u > _bt->frac)
_bt->sec++;
_bt->sec += _bt2->sec;
}
static __inline void
bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
{
uint64_t _u;
_u = _bt->frac;
_bt->frac -= _bt2->frac;
if (_u < _bt->frac)
_bt->sec--;
_bt->sec -= _bt2->sec;
}
static __inline void
bintime_mul(struct bintime *_bt, u_int _x)
{
uint64_t _p1, _p2;
_p1 = (_bt->frac & 0xffffffffull) * _x;
_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
_bt->sec *= _x;
_bt->sec += (_p2 >> 32);
_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
}
static __inline void
bintime_shift(struct bintime *_bt, int _exp)
{
if (_exp > 0) {
_bt->sec <<= _exp;
_bt->sec |= _bt->frac >> (64 - _exp);
_bt->frac <<= _exp;
} else if (_exp < 0) {
_bt->frac >>= -_exp;
_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
_bt->sec >>= -_exp;
}
}
#define bintime_clear(a) ((a)->sec = (a)->frac = 0)
#define bintime_isset(a) ((a)->sec || (a)->frac)
#define bintime_cmp(a, b, cmp) \
(((a)->sec == (b)->sec) ? \
((a)->frac cmp (b)->frac) : \
((a)->sec cmp (b)->sec))
#define SBT_1S ((sbintime_t)1 << 32)
#define SBT_1M (SBT_1S * 60)
#define SBT_1MS (SBT_1S / 1000)
#define SBT_1US (SBT_1S / 1000000)
#define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
#define SBT_MAX 0x7fffffffffffffffLL
static __inline int
sbintime_getsec(sbintime_t _sbt)
{
return (_sbt >> 32);
}
static __inline sbintime_t
bttosbt(const struct bintime _bt)
{
return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
}
static __inline struct bintime
sbttobt(sbintime_t _sbt)
{
struct bintime _bt;
_bt.sec = _sbt >> 32;
_bt.frac = _sbt << 32;
return (_bt);
}
/*
* Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS results in
* large roundoff errors which sbttons() and nstosbt() avoid. Millisecond and
* microsecond functions are also provided for completeness.
*
* These functions return the smallest sbt larger or equal to the
* number of seconds requested so that sbttoX(Xtosbt(y)) == y. Unlike
* top of second computations below, which require that we tick at the
* top of second, these need to be rounded up so we do whatever for at
* least as long as requested.
*
* The naive computation we'd do is this
* ((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
* However, that overflows. Instead, we compute
* ((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
* and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
* term to ensure we are using exactly the right constant. We use the lesser
* evil of ull rather than a uint64_t cast to ensure we have well defined
* right shift semantics. With these changes, we get all the ns, us and ms
* conversions back and forth right.
*/
static __inline int64_t
sbttons(sbintime_t _sbt)
{
uint64_t ns;
ns = _sbt;
if (ns >= SBT_1S)
ns = (ns >> 32) * 1000000000;
else
ns = 0;
return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
}
static __inline sbintime_t
nstosbt(int64_t _ns)
{
sbintime_t sb = 0;
if (_ns >= SBT_1S) {
sb = (_ns / 1000000000) * SBT_1S;
_ns = _ns % 1000000000;
}
/* 9223372037 = ceil(2^63 / 1000000000) */
sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
return (sb);
}
static __inline int64_t
sbttous(sbintime_t _sbt)
{
return ((1000000 * _sbt) >> 32);
}
static __inline sbintime_t
ustosbt(int64_t _us)
{
sbintime_t sb = 0;
if (_us >= SBT_1S) {
sb = (_us / 1000000) * SBT_1S;
_us = _us % 1000000;
}
/* 9223372036855 = ceil(2^63 / 1000000) */
sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
return (sb);
}
static __inline int64_t
sbttoms(sbintime_t _sbt)
{
return ((1000 * _sbt) >> 32);
}
static __inline sbintime_t
mstosbt(int64_t _ms)
{
sbintime_t sb = 0;
if (_ms >= SBT_1S) {
sb = (_ms / 1000) * SBT_1S;
_ms = _ms % 1000;
}
/* 9223372036854776 = ceil(2^63 / 1000) */
sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
return (sb);
}
/*-
* Background information:
*
* When converting between timestamps on parallel timescales of differing
* resolutions it is historical and scientific practice to round down rather
* than doing 4/5 rounding.
*
* The date changes at midnight, not at noon.
*
* Even at 15:59:59.999999999 it's not four'o'clock.
*
* time_second ticks after N.999999999 not after N.4999999999
*/
static __inline void
bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
{
_ts->tv_sec = _bt->sec;
_ts->tv_nsec = ((uint64_t)1000000000 *
(uint32_t)(_bt->frac >> 32)) >> 32;
}
static __inline void
timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
{
_bt->sec = _ts->tv_sec;
/* 18446744073 = int(2^64 / 1000000000) */
_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
}
static __inline void
bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
{
_tv->tv_sec = _bt->sec;
_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
}
static __inline void
timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
{
_bt->sec = _tv->tv_sec;
/* 18446744073709 = int(2^64 / 1000000) */
_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
}
static __inline struct timespec
sbttots(sbintime_t _sbt)
{
struct timespec _ts;
_ts.tv_sec = _sbt >> 32;
_ts.tv_nsec = sbttons((uint32_t)_sbt);
return (_ts);
}
static __inline sbintime_t
tstosbt(struct timespec _ts)
{
return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
}
static __inline struct timeval
sbttotv(sbintime_t _sbt)
{
struct timeval _tv;
_tv.tv_sec = _sbt >> 32;
_tv.tv_usec = sbttous((uint32_t)_sbt);
return (_tv);
}
static __inline sbintime_t
tvtosbt(struct timeval _tv)
{
return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
}
/* Operations on timespecs */
#define timespecclear(tvp) ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
#define timespecisset(tvp) ((tvp)->tv_sec || (tvp)->tv_nsec)
#define timespeccmp(tvp, uvp, cmp) \
(((tvp)->tv_sec == (uvp)->tv_sec) ? \
((tvp)->tv_nsec cmp (uvp)->tv_nsec) : \
((tvp)->tv_sec cmp (uvp)->tv_sec))
#define timespecadd(tsp, usp, vsp) \
do { \
(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec; \
(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec; \
if ((vsp)->tv_nsec >= 1000000000L) { \
(vsp)->tv_sec++; \
(vsp)->tv_nsec -= 1000000000L; \
} \
} while (0)
#define timespecsub(tsp, usp, vsp) \
do { \
(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec; \
(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec; \
if ((vsp)->tv_nsec < 0) { \
(vsp)->tv_sec--; \
(vsp)->tv_nsec += 1000000000L; \
} \
} while (0)
#ifndef _KERNEL /* NetBSD/OpenBSD compatible interfaces */
#define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
#define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
#define timercmp(tvp, uvp, cmp) \
(((tvp)->tv_sec == (uvp)->tv_sec) ? \
((tvp)->tv_usec cmp (uvp)->tv_usec) : \
((tvp)->tv_sec cmp (uvp)->tv_sec))
#define timeradd(tvp, uvp, vvp) \
do { \
(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec; \
(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec; \
if ((vvp)->tv_usec >= 1000000) { \
(vvp)->tv_sec++; \
(vvp)->tv_usec -= 1000000; \
} \
} while (0)
#define timersub(tvp, uvp, vvp) \
do { \
(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
if ((vvp)->tv_usec < 0) { \
(vvp)->tv_sec--; \
(vvp)->tv_usec += 1000000; \
} \
} while (0)
#endif
#endif /* __BSD_VISIBLE */
/*
* Names of the interval timers, and structure
* defining a timer setting.
*/
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2
struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
};
#ifndef _KERNEL
#include <time.h>
__BEGIN_DECLS
int utimes (const char *__path, const struct timeval *__tvp);
#if __BSD_VISIBLE
int adjtime (const struct timeval *, struct timeval *);
int futimes (int, const struct timeval *);
int lutimes (const char *, const struct timeval *);
int settimeofday (const struct timeval *, const struct timezone *);
#endif
#if __MISC_VISIBLE || __XSI_VISIBLE
int getitimer (int __which, struct itimerval *__value);
int setitimer (int __which, const struct itimerval *__restrict __value,
struct itimerval *__restrict __ovalue);
#endif
int gettimeofday (struct timeval *__restrict __p,
void *__restrict __tz);
#if __GNU_VISIBLE
int futimesat (int, const char *, const struct timeval [2]);
#endif
#ifdef _COMPILING_NEWLIB
int _gettimeofday (struct timeval *__p, void *__tz);
#endif
__END_DECLS
#endif /* !_KERNEL */
#include <machine/_time.h>
#endif /* !_SYS_TIME_H_ */