4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-23 23:47:22 +08:00
Kwok Cheung Yeung e18743072b amdgcn: Add vectorized math routines
This implements a set of vectorized math routines to be used by the
compiler auto-vectorizer.  Versions for vectors with 2 lanes up to
64 lanes (in powers of 2) are provided.

These routines are based on the scalar versions of the math routines in
libm/common, libm/math and libm/mathfp.  They make extensive use of the GCC
C vector extensions and GCN-specific builtins in GCC.
2023-01-18 13:22:58 -05:00

136 lines
4.5 KiB
C

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/s_asine.c in Newlib. */
#include "amdgcnmach.h"
v64si v64df_numtest (v64df);
v64df v64df_sqrt_aux (v64df, v64di);
static const double p[] = { -0.27368494524164255994e+2,
0.57208227877891731407e+2,
-0.39688862997404877339e+2,
0.10152522233806463645e+2,
-0.69674573447350646411 };
static const double q[] = { -0.16421096714498560795e+3,
0.41714430248260412556e+3,
-0.38186303361750149284e+3,
0.15095270841030604719e+3,
-0.23823859153670238830e+2 };
static const double a[] = { 0.0, 0.78539816339744830962 };
static const double b[] = { 1.57079632679489661923, 0.78539816339744830962 };
#if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv)
DEF_VD_MATH_FUNC (v64df, asine, v64df x, int acosine)
{
FUNCTION_INIT (v64df);
v64si branch = VECTOR_INIT (0);
/* Check for special values. */
v64si i = v64df_numtest (x);
VECTOR_IF ((i == NAN) | (i == INF), cond)
errno = EDOM;
VECTOR_RETURN (VECTOR_MERGE (x, VECTOR_INIT (z_infinity.d),
i == NAN),
cond);
VECTOR_ENDIF
v64df y = __builtin_gcn_fabsv (x);
v64df g, res;
VECTOR_IF (y > 0.5, cond)
VECTOR_COND_MOVE (i, VECTOR_INIT (1 - acosine), cond);
/* Check for range error. */
VECTOR_IF2 (y > 1.0, cond2, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond2);
VECTOR_ENDIF
VECTOR_COND_MOVE (g, (1.0 - y) / 2.0, cond);
VECTOR_COND_MOVE (y, -2.0 * v64df_sqrt_aux (g, __mask), cond);
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond);
VECTOR_ELSE (cond)
VECTOR_COND_MOVE (i, VECTOR_INIT (acosine), cond);
VECTOR_IF2 (y < z_rooteps, cond2, cond)
VECTOR_COND_MOVE (res, y, cond2);
VECTOR_ELSE2 (cond2, cond)
VECTOR_COND_MOVE (g, y * y, cond2);
VECTOR_ENDIF
VECTOR_ENDIF
VECTOR_IF ((y >= z_rooteps) | __builtin_convertvector(branch, v64di), cond)
{
/* Calculate the Taylor series. */
v64df P = ((((p[4] * g + p[3]) * g + p[2]) * g + p[1]) * g + p[0]) * g;
v64df Q = ((((g + q[4]) * g + q[3]) * g + q[2]) * g + q[1]) * g + q[0];
v64df R = P / Q;
VECTOR_COND_MOVE (res, y + y * R, cond);
}
VECTOR_ENDIF
v64df a_i = VECTOR_MERGE (VECTOR_INIT (a[1]), VECTOR_INIT (a[0]), i != 0);
/* Calculate asine or acose. */
if (acosine == 0)
{
VECTOR_COND_MOVE (res, (a_i + res) + a_i, NO_COND);
VECTOR_IF (x < 0.0, cond)
VECTOR_COND_MOVE (res, -res, cond);
VECTOR_ENDIF
}
else
{
v64df b_i = VECTOR_MERGE (VECTOR_INIT(b[1]), VECTOR_INIT(b[0]), i != 0);
VECTOR_IF (x < 0.0, cond)
VECTOR_COND_MOVE (res, (b_i + res) + b_i, cond);
VECTOR_ELSE (cond)
VECTOR_COND_MOVE (res, (a_i - res) + a_i, cond);
VECTOR_ENDIF
}
VECTOR_RETURN (res, NO_COND);
FUNCTION_RETURN;
}
#endif