mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-14 17:59:28 +08:00
9087163804
Signed-off-by: Yaakov Selkowitz <yselkowi@redhat.com>
166 lines
3.8 KiB
C
166 lines
3.8 KiB
C
|
|
/* @(#)z_asine.c 1.0 98/08/13 */
|
|
/******************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
******************************************************************/
|
|
|
|
/*
|
|
FUNCTION
|
|
<<asin>>, <<asinf>>, <<acos>>, <<acosf>>, <<asine>>, <<asinef>>---arc sine or cosine
|
|
|
|
INDEX
|
|
asin
|
|
INDEX
|
|
asinf
|
|
INDEX
|
|
acos
|
|
INDEX
|
|
acosf
|
|
INDEX
|
|
asine
|
|
INDEX
|
|
asinef
|
|
|
|
SYNOPSIS
|
|
#include <math.h>
|
|
double asine(double <[x]>);
|
|
float asinef(float <[x]>);
|
|
double asin(double <[x]>);
|
|
float asinf(float <[x]>);
|
|
double acos(double <[x]>);
|
|
float acosf(float <[x]>);
|
|
|
|
DESCRIPTION
|
|
|
|
<<asin>> computes the inverse sine or cosine of the argument <[x]>.
|
|
Arguments to <<asin>> and <<acos>> must be in the range @minus{}1 to 1.
|
|
|
|
<<asinf>> and <<acosf>> are identical to <<asin>> and <<acos>>, other
|
|
than taking and returning floats.
|
|
|
|
RETURNS
|
|
@ifnottex
|
|
<<asin>> and <<acos>> return values in radians, in the range of -pi/2 to pi/2.
|
|
@end ifnottex
|
|
@tex
|
|
<<asin>> and <<acos>> return values in radians, in the range of $-\pi/2$ to $\pi/2$.
|
|
@end tex
|
|
|
|
If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>>
|
|
return NaN (not a number), set the global variable <<errno>> to
|
|
<<EDOM>>, and issue a <<DOMAIN error>> message.
|
|
|
|
*/
|
|
|
|
/******************************************************************
|
|
* Arcsine
|
|
*
|
|
* Input:
|
|
* x - floating point value
|
|
* acosine - indicates acos calculation
|
|
*
|
|
* Output:
|
|
* Arcsine of x.
|
|
*
|
|
* Description:
|
|
* This routine calculates arcsine / arccosine.
|
|
*
|
|
*****************************************************************/
|
|
|
|
#include "fdlibm.h"
|
|
#include "zmath.h"
|
|
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
|
|
static const double p[] = { -0.27368494524164255994e+2,
|
|
0.57208227877891731407e+2,
|
|
-0.39688862997404877339e+2,
|
|
0.10152522233806463645e+2,
|
|
-0.69674573447350646411 };
|
|
static const double q[] = { -0.16421096714498560795e+3,
|
|
0.41714430248260412556e+3,
|
|
-0.38186303361750149284e+3,
|
|
0.15095270841030604719e+3,
|
|
-0.23823859153670238830e+2 };
|
|
static const double a[] = { 0.0, 0.78539816339744830962 };
|
|
static const double b[] = { 1.57079632679489661923, 0.78539816339744830962 };
|
|
|
|
double
|
|
asine (double x,
|
|
int acosine)
|
|
{
|
|
int flag, i;
|
|
int branch = 0;
|
|
double g, res, R, P, Q, y;
|
|
|
|
/* Check for special values. */
|
|
i = numtest (x);
|
|
if (i == NAN || i == INF)
|
|
{
|
|
errno = EDOM;
|
|
if (i == NAN)
|
|
return (x);
|
|
else
|
|
return (z_infinity.d);
|
|
}
|
|
|
|
y = fabs (x);
|
|
flag = acosine;
|
|
|
|
if (y > 0.5)
|
|
{
|
|
i = 1 - flag;
|
|
|
|
/* Check for range error. */
|
|
if (y > 1.0)
|
|
{
|
|
errno = ERANGE;
|
|
return (z_notanum.d);
|
|
}
|
|
|
|
g = (1 - y) / 2.0;
|
|
y = -2 * sqrt (g);
|
|
branch = 1;
|
|
}
|
|
else
|
|
{
|
|
i = flag;
|
|
if (y < z_rooteps)
|
|
res = y;
|
|
else
|
|
g = y * y;
|
|
}
|
|
|
|
if (y >= z_rooteps || branch == 1)
|
|
{
|
|
/* Calculate the Taylor series. */
|
|
P = ((((p[4] * g + p[3]) * g + p[2]) * g + p[1]) * g + p[0]) * g;
|
|
Q = ((((g + q[4]) * g + q[3]) * g + q[2]) * g + q[1]) * g + q[0];
|
|
R = P / Q;
|
|
|
|
res = y + y * R;
|
|
}
|
|
|
|
/* Calculate asine or acose. */
|
|
if (flag == 0)
|
|
{
|
|
res = (a[i] + res) + a[i];
|
|
if (x < 0.0)
|
|
res = -res;
|
|
}
|
|
else
|
|
{
|
|
if (x < 0.0)
|
|
res = (b[i] + res) + b[i];
|
|
else
|
|
res = (a[i] - res) + a[i];
|
|
}
|
|
|
|
return (res);
|
|
}
|
|
|
|
#endif /* _DOUBLE_IS_32BITS */
|