4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-18 20:39:33 +08:00
newlib-cygwin/winsup/bz2lib/decompress.c
2001-04-18 20:00:34 +00:00

661 lines
21 KiB
C

/*-------------------------------------------------------------*/
/*--- Decompression machinery ---*/
/*--- decompress.c ---*/
/*-------------------------------------------------------------*/
/*--
This file is a part of bzip2 and/or libbzip2, a program and
library for lossless, block-sorting data compression.
Copyright (C) 1996-2000 Julian R Seward. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
3. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
4. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.
jseward@acm.org
bzip2/libbzip2 version 1.0 of 21 March 2000
This program is based on (at least) the work of:
Mike Burrows
David Wheeler
Peter Fenwick
Alistair Moffat
Radford Neal
Ian H. Witten
Robert Sedgewick
Jon L. Bentley
For more information on these sources, see the manual.
--*/
#include "bzlib_private.h"
/*---------------------------------------------------*/
static
void makeMaps_d ( DState* s )
{
Int32 i;
s->nInUse = 0;
for (i = 0; i < 256; i++)
if (s->inUse[i]) {
s->seqToUnseq[s->nInUse] = i;
s->nInUse++;
}
}
/*---------------------------------------------------*/
#define RETURN(rrr) \
{ retVal = rrr; goto save_state_and_return; };
#define GET_BITS(lll,vvv,nnn) \
case lll: s->state = lll; \
while (True) { \
if (s->bsLive >= nnn) { \
UInt32 v; \
v = (s->bsBuff >> \
(s->bsLive-nnn)) & ((1 << nnn)-1); \
s->bsLive -= nnn; \
vvv = v; \
break; \
} \
if (s->strm->avail_in == 0) RETURN(BZ_OK); \
s->bsBuff \
= (s->bsBuff << 8) | \
((UInt32) \
(*((UChar*)(s->strm->next_in)))); \
s->bsLive += 8; \
s->strm->next_in++; \
s->strm->avail_in--; \
s->strm->total_in_lo32++; \
if (s->strm->total_in_lo32 == 0) \
s->strm->total_in_hi32++; \
}
#define GET_UCHAR(lll,uuu) \
GET_BITS(lll,uuu,8)
#define GET_BIT(lll,uuu) \
GET_BITS(lll,uuu,1)
/*---------------------------------------------------*/
#define GET_MTF_VAL(label1,label2,lval) \
{ \
if (groupPos == 0) { \
groupNo++; \
if (groupNo >= nSelectors) \
RETURN(BZ_DATA_ERROR); \
groupPos = BZ_G_SIZE; \
gSel = s->selector[groupNo]; \
gMinlen = s->minLens[gSel]; \
gLimit = &(s->limit[gSel][0]); \
gPerm = &(s->perm[gSel][0]); \
gBase = &(s->base[gSel][0]); \
} \
groupPos--; \
zn = gMinlen; \
GET_BITS(label1, zvec, zn); \
while (1) { \
if (zn > 20 /* the longest code */) \
RETURN(BZ_DATA_ERROR); \
if (zvec <= gLimit[zn]) break; \
zn++; \
GET_BIT(label2, zj); \
zvec = (zvec << 1) | zj; \
}; \
if (zvec - gBase[zn] < 0 \
|| zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \
RETURN(BZ_DATA_ERROR); \
lval = gPerm[zvec - gBase[zn]]; \
}
/*---------------------------------------------------*/
Int32 BZ2_decompress ( DState* s )
{
UChar uc;
Int32 retVal;
Int32 minLen, maxLen;
bz_stream* strm = s->strm;
/* stuff that needs to be saved/restored */
Int32 i;
Int32 j;
Int32 t;
Int32 alphaSize;
Int32 nGroups;
Int32 nSelectors;
Int32 EOB;
Int32 groupNo;
Int32 groupPos;
Int32 nextSym;
Int32 nblockMAX;
Int32 nblock;
Int32 es;
Int32 N;
Int32 curr;
Int32 zt;
Int32 zn;
Int32 zvec;
Int32 zj;
Int32 gSel;
Int32 gMinlen;
Int32* gLimit;
Int32* gBase;
Int32* gPerm;
if (s->state == BZ_X_MAGIC_1) {
/*initialise the save area*/
s->save_i = 0;
s->save_j = 0;
s->save_t = 0;
s->save_alphaSize = 0;
s->save_nGroups = 0;
s->save_nSelectors = 0;
s->save_EOB = 0;
s->save_groupNo = 0;
s->save_groupPos = 0;
s->save_nextSym = 0;
s->save_nblockMAX = 0;
s->save_nblock = 0;
s->save_es = 0;
s->save_N = 0;
s->save_curr = 0;
s->save_zt = 0;
s->save_zn = 0;
s->save_zvec = 0;
s->save_zj = 0;
s->save_gSel = 0;
s->save_gMinlen = 0;
s->save_gLimit = NULL;
s->save_gBase = NULL;
s->save_gPerm = NULL;
}
/*restore from the save area*/
i = s->save_i;
j = s->save_j;
t = s->save_t;
alphaSize = s->save_alphaSize;
nGroups = s->save_nGroups;
nSelectors = s->save_nSelectors;
EOB = s->save_EOB;
groupNo = s->save_groupNo;
groupPos = s->save_groupPos;
nextSym = s->save_nextSym;
nblockMAX = s->save_nblockMAX;
nblock = s->save_nblock;
es = s->save_es;
N = s->save_N;
curr = s->save_curr;
zt = s->save_zt;
zn = s->save_zn;
zvec = s->save_zvec;
zj = s->save_zj;
gSel = s->save_gSel;
gMinlen = s->save_gMinlen;
gLimit = s->save_gLimit;
gBase = s->save_gBase;
gPerm = s->save_gPerm;
retVal = BZ_OK;
switch (s->state) {
GET_UCHAR(BZ_X_MAGIC_1, uc);
if (uc != 'B') RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_2, uc);
if (uc != 'Z') RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_3, uc)
if (uc != 'h') RETURN(BZ_DATA_ERROR_MAGIC);
GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
if (s->blockSize100k < '1' ||
s->blockSize100k > '9') RETURN(BZ_DATA_ERROR_MAGIC);
s->blockSize100k -= '0';
if (s->smallDecompress) {
s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
s->ll4 = BZALLOC(
((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar)
);
if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
} else {
s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
}
GET_UCHAR(BZ_X_BLKHDR_1, uc);
if (uc == 0x17) goto endhdr_2;
if (uc != 0x31) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_2, uc);
if (uc != 0x41) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_3, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_4, uc);
if (uc != 0x26) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_5, uc);
if (uc != 0x53) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_6, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
s->currBlockNo++;
if (s->verbosity >= 2)
VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo );
s->storedBlockCRC = 0;
GET_UCHAR(BZ_X_BCRC_1, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_2, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_3, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_4, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);
s->origPtr = 0;
GET_UCHAR(BZ_X_ORIGPTR_1, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_2, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_3, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
if (s->origPtr < 0)
RETURN(BZ_DATA_ERROR);
if (s->origPtr > 10 + 100000*s->blockSize100k)
RETURN(BZ_DATA_ERROR);
/*--- Receive the mapping table ---*/
for (i = 0; i < 16; i++) {
GET_BIT(BZ_X_MAPPING_1, uc);
if (uc == 1)
s->inUse16[i] = True; else
s->inUse16[i] = False;
}
for (i = 0; i < 256; i++) s->inUse[i] = False;
for (i = 0; i < 16; i++)
if (s->inUse16[i])
for (j = 0; j < 16; j++) {
GET_BIT(BZ_X_MAPPING_2, uc);
if (uc == 1) s->inUse[i * 16 + j] = True;
}
makeMaps_d ( s );
if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
alphaSize = s->nInUse+2;
/*--- Now the selectors ---*/
GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR);
GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
for (i = 0; i < nSelectors; i++) {
j = 0;
while (True) {
GET_BIT(BZ_X_SELECTOR_3, uc);
if (uc == 0) break;
j++;
if (j >= nGroups) RETURN(BZ_DATA_ERROR);
}
s->selectorMtf[i] = j;
}
/*--- Undo the MTF values for the selectors. ---*/
{
UChar pos[BZ_N_GROUPS], tmp, v;
for (v = 0; v < nGroups; v++) pos[v] = v;
for (i = 0; i < nSelectors; i++) {
v = s->selectorMtf[i];
tmp = pos[v];
while (v > 0) { pos[v] = pos[v-1]; v--; }
pos[0] = tmp;
s->selector[i] = tmp;
}
}
/*--- Now the coding tables ---*/
for (t = 0; t < nGroups; t++) {
GET_BITS(BZ_X_CODING_1, curr, 5);
for (i = 0; i < alphaSize; i++) {
while (True) {
if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
GET_BIT(BZ_X_CODING_2, uc);
if (uc == 0) break;
GET_BIT(BZ_X_CODING_3, uc);
if (uc == 0) curr++; else curr--;
}
s->len[t][i] = curr;
}
}
/*--- Create the Huffman decoding tables ---*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
if (s->len[t][i] < minLen) minLen = s->len[t][i];
}
BZ2_hbCreateDecodeTables (
&(s->limit[t][0]),
&(s->base[t][0]),
&(s->perm[t][0]),
&(s->len[t][0]),
minLen, maxLen, alphaSize
);
s->minLens[t] = minLen;
}
/*--- Now the MTF values ---*/
EOB = s->nInUse+1;
nblockMAX = 100000 * s->blockSize100k;
groupNo = -1;
groupPos = 0;
for (i = 0; i <= 255; i++) s->unzftab[i] = 0;
/*-- MTF init --*/
{
Int32 ii, jj, kk;
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
/*-- end MTF init --*/
nblock = 0;
GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);
while (True) {
if (nextSym == EOB) break;
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
es = -1;
N = 1;
do {
if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
if (nextSym == BZ_RUNB) es = es + (1+1) * N;
N = N * 2;
GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
}
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
es++;
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
s->unzftab[uc] += es;
if (s->smallDecompress)
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->ll16[nblock] = (UInt16)uc;
nblock++;
es--;
}
else
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->tt[nblock] = (UInt32)uc;
nblock++;
es--;
};
continue;
} else {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
/*-- uc = MTF ( nextSym-1 ) --*/
{
Int32 ii, jj, kk, pp, lno, off;
UInt32 nn;
nn = (UInt32)(nextSym - 1);
if (nn < MTFL_SIZE) {
/* avoid general-case expense */
pp = s->mtfbase[0];
uc = s->mtfa[pp+nn];
while (nn > 3) {
Int32 z = pp+nn;
s->mtfa[(z) ] = s->mtfa[(z)-1];
s->mtfa[(z)-1] = s->mtfa[(z)-2];
s->mtfa[(z)-2] = s->mtfa[(z)-3];
s->mtfa[(z)-3] = s->mtfa[(z)-4];
nn -= 4;
}
while (nn > 0) {
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
};
s->mtfa[pp] = uc;
} else {
/* general case */
lno = nn / MTFL_SIZE;
off = nn % MTFL_SIZE;
pp = s->mtfbase[lno] + off;
uc = s->mtfa[pp];
while (pp > s->mtfbase[lno]) {
s->mtfa[pp] = s->mtfa[pp-1]; pp--;
};
s->mtfbase[lno]++;
while (lno > 0) {
s->mtfbase[lno]--;
s->mtfa[s->mtfbase[lno]]
= s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
lno--;
}
s->mtfbase[0]--;
s->mtfa[s->mtfbase[0]] = uc;
if (s->mtfbase[0] == 0) {
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
}
}
/*-- end uc = MTF ( nextSym-1 ) --*/
s->unzftab[s->seqToUnseq[uc]]++;
if (s->smallDecompress)
s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]);
nblock++;
GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
continue;
}
}
/* Now we know what nblock is, we can do a better sanity
check on s->origPtr.
*/
if (s->origPtr < 0 || s->origPtr >= nblock)
RETURN(BZ_DATA_ERROR);
s->state_out_len = 0;
s->state_out_ch = 0;
BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
s->state = BZ_X_OUTPUT;
if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );
/*-- Set up cftab to facilitate generation of T^(-1) --*/
s->cftab[0] = 0;
for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];
if (s->smallDecompress) {
/*-- Make a copy of cftab, used in generation of T --*/
for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];
/*-- compute the T vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->ll16[i]);
SET_LL(i, s->cftabCopy[uc]);
s->cftabCopy[uc]++;
}
/*-- Compute T^(-1) by pointer reversal on T --*/
i = s->origPtr;
j = GET_LL(i);
do {
Int32 tmp = GET_LL(j);
SET_LL(j, i);
i = j;
j = tmp;
}
while (i != s->origPtr);
s->tPos = s->origPtr;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_SMALL(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_SMALL(s->k0); s->nblock_used++;
}
} else {
/*-- compute the T^(-1) vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->tt[i] & 0xff);
s->tt[s->cftab[uc]] |= (i << 8);
s->cftab[uc]++;
}
s->tPos = s->tt[s->origPtr] >> 8;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_FAST(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_FAST(s->k0); s->nblock_used++;
}
}
RETURN(BZ_OK);
endhdr_2:
GET_UCHAR(BZ_X_ENDHDR_2, uc);
if (uc != 0x72) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_3, uc);
if (uc != 0x45) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_4, uc);
if (uc != 0x38) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_5, uc);
if (uc != 0x50) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_6, uc);
if (uc != 0x90) RETURN(BZ_DATA_ERROR);
s->storedCombinedCRC = 0;
GET_UCHAR(BZ_X_CCRC_1, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_2, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_3, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_4, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
s->state = BZ_X_IDLE;
RETURN(BZ_STREAM_END);
default: AssertH ( False, 4001 );
}
AssertH ( False, 4002 );
save_state_and_return:
s->save_i = i;
s->save_j = j;
s->save_t = t;
s->save_alphaSize = alphaSize;
s->save_nGroups = nGroups;
s->save_nSelectors = nSelectors;
s->save_EOB = EOB;
s->save_groupNo = groupNo;
s->save_groupPos = groupPos;
s->save_nextSym = nextSym;
s->save_nblockMAX = nblockMAX;
s->save_nblock = nblock;
s->save_es = es;
s->save_N = N;
s->save_curr = curr;
s->save_zt = zt;
s->save_zn = zn;
s->save_zvec = zvec;
s->save_zj = zj;
s->save_gSel = gSel;
s->save_gMinlen = gMinlen;
s->save_gLimit = gLimit;
s->save_gBase = gBase;
s->save_gPerm = gPerm;
return retVal;
}
/*-------------------------------------------------------------*/
/*--- end decompress.c ---*/
/*-------------------------------------------------------------*/