713 lines
16 KiB
C
713 lines
16 KiB
C
#ifndef _CEPHES_EMATH_H
|
|
#define _CEPHES_EMATH_H
|
|
|
|
/* This file is extracted from S L Moshier's ioldoubl.c,
|
|
* modified for use in MinGW
|
|
*
|
|
* Extended precision arithmetic functions for long double I/O.
|
|
* This program has been placed in the public domain.
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
* Revision history:
|
|
*
|
|
* 5 Jan 84 PDP-11 assembly language version
|
|
* 6 Dec 86 C language version
|
|
* 30 Aug 88 100 digit version, improved rounding
|
|
* 15 May 92 80-bit long double support
|
|
*
|
|
* Author: S. L. Moshier.
|
|
*
|
|
* 6 Oct 02 Modified for MinGW by inlining utility routines,
|
|
* removing global variables, and splitting out strtold
|
|
* from _IO_ldtoa and _IO_ldtostr.
|
|
*
|
|
* Danny Smith <dannysmith@users.sourceforge.net>
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
/* ieee.c
|
|
*
|
|
* Extended precision IEEE binary floating point arithmetic routines
|
|
*
|
|
* Numbers are stored in C language as arrays of 16-bit unsigned
|
|
* short integers. The arguments of the routines are pointers to
|
|
* the arrays.
|
|
*
|
|
*
|
|
* External e type data structure, simulates Intel 8087 chip
|
|
* temporary real format but possibly with a larger significand:
|
|
*
|
|
* NE-1 significand words (least significant word first,
|
|
* most significant bit is normally set)
|
|
* exponent (value = EXONE for 1.0,
|
|
* top bit is the sign)
|
|
*
|
|
*
|
|
* Internal data structure of a number (a "word" is 16 bits):
|
|
*
|
|
* ei[0] sign word (0 for positive, 0xffff for negative)
|
|
* ei[1] biased __exponent (value = EXONE for the number 1.0)
|
|
* ei[2] high guard word (always zero after normalization)
|
|
* ei[3]
|
|
* to ei[NI-2] significand (NI-4 significand words,
|
|
* most significant word first,
|
|
* most significant bit is set)
|
|
* ei[NI-1] low guard word (0x8000 bit is rounding place)
|
|
*
|
|
*
|
|
*
|
|
* Routines for external format numbers
|
|
*
|
|
* __asctoe64( string, &d ) ASCII string to long double
|
|
* __asctoeg( string, e, prec ) ASCII string to specified precision
|
|
* __e64toe( &d, e ) IEEE long double precision to e type
|
|
* __eadd( a, b, c ) c = b + a
|
|
* __eclear(e) e = 0
|
|
* __ecmp (a, b) Returns 1 if a > b, 0 if a == b,
|
|
* -1 if a < b, -2 if either a or b is a NaN.
|
|
* __ediv( a, b, c ) c = b / a
|
|
* __efloor( a, b ) truncate to integer, toward -infinity
|
|
* __efrexp( a, exp, s ) extract exponent and significand
|
|
* __eifrac( e, &l, frac ) e to long integer and e type fraction
|
|
* __euifrac( e, &l, frac ) e to unsigned long integer and e type fraction
|
|
* __einfin( e ) set e to infinity, leaving its sign alone
|
|
* __eldexp( a, n, b ) multiply by 2**n
|
|
* __emov( a, b ) b = a
|
|
* __emul( a, b, c ) c = b * a
|
|
* __eneg(e) e = -e
|
|
* __eround( a, b ) b = nearest integer value to a
|
|
* __esub( a, b, c ) c = b - a
|
|
* __e24toasc( &f, str, n ) single to ASCII string, n digits after decimal
|
|
* __e53toasc( &d, str, n ) double to ASCII string, n digits after decimal
|
|
* __e64toasc( &d, str, n ) long double to ASCII string
|
|
* __etoasc( e, str, n ) e to ASCII string, n digits after decimal
|
|
* __etoe24( e, &f ) convert e type to IEEE single precision
|
|
* __etoe53( e, &d ) convert e type to IEEE double precision
|
|
* __etoe64( e, &d ) convert e type to IEEE long double precision
|
|
* __eisneg( e ) 1 if sign bit of e != 0, else 0
|
|
* __eisinf( e ) 1 if e has maximum exponent (non-IEEE)
|
|
* or is infinite (IEEE)
|
|
* __eisnan( e ) 1 if e is a NaN
|
|
* __esqrt( a, b ) b = square root of a
|
|
*
|
|
*
|
|
* Routines for internal format numbers
|
|
*
|
|
* __eaddm( ai, bi ) add significands, bi = bi + ai
|
|
* __ecleaz(ei) ei = 0
|
|
* __ecleazs(ei) set ei = 0 but leave its sign alone
|
|
* __ecmpm( ai, bi ) compare significands, return 1, 0, or -1
|
|
* __edivm( ai, bi ) divide significands, bi = bi / ai
|
|
* __emdnorm(ai,l,s,exp) normalize and round off
|
|
* __emovi( a, ai ) convert external a to internal ai
|
|
* __emovo( ai, a ) convert internal ai to external a
|
|
* __emovz( ai, bi ) bi = ai, low guard word of bi = 0
|
|
* __emulm( ai, bi ) multiply significands, bi = bi * ai
|
|
* __enormlz(ei) left-justify the significand
|
|
* __eshdn1( ai ) shift significand and guards down 1 bit
|
|
* __eshdn8( ai ) shift down 8 bits
|
|
* __eshdn6( ai ) shift down 16 bits
|
|
* __eshift( ai, n ) shift ai n bits up (or down if n < 0)
|
|
* __eshup1( ai ) shift significand and guards up 1 bit
|
|
* __eshup8( ai ) shift up 8 bits
|
|
* __eshup6( ai ) shift up 16 bits
|
|
* __esubm( ai, bi ) subtract significands, bi = bi - ai
|
|
*
|
|
*
|
|
* The result is always normalized and rounded to NI-4 word precision
|
|
* after each arithmetic operation.
|
|
*
|
|
* Exception flags are NOT fully supported.
|
|
*
|
|
* Define INFINITY in mconf.h for support of infinity; otherwise a
|
|
* saturation arithmetic is implemented.
|
|
*
|
|
* Define NANS for support of Not-a-Number items; otherwise the
|
|
* arithmetic will never produce a NaN output, and might be confused
|
|
* by a NaN input.
|
|
* If NaN's are supported, the output of ecmp(a,b) is -2 if
|
|
* either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
|
|
* may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
|
|
* if in doubt.
|
|
* Signaling NaN's are NOT supported; they are treated the same
|
|
* as quiet NaN's.
|
|
*
|
|
* Denormals are always supported here where appropriate (e.g., not
|
|
* for conversion to DEC numbers).
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <locale.h>
|
|
#include <ctype.h>
|
|
|
|
#define alloca __builtin_alloca
|
|
|
|
/* Don't build non-ANSI _IO_ldtoa. It is not thread safe. */
|
|
#ifndef USE_LDTOA
|
|
#define USE_LDTOA 0
|
|
#endif
|
|
|
|
|
|
/* Number of 16 bit words in external x type format */
|
|
#define NE 6
|
|
|
|
/* Number of 16 bit words in internal format */
|
|
#define NI (NE+3)
|
|
|
|
/* Array offset to exponent */
|
|
#define E 1
|
|
|
|
/* Array offset to high guard word */
|
|
#define M 2
|
|
|
|
/* Number of bits of precision */
|
|
#define NBITS ((NI-4)*16)
|
|
|
|
/* Maximum number of decimal digits in ASCII conversion
|
|
* = NBITS*log10(2)
|
|
*/
|
|
#define NDEC (NBITS*8/27)
|
|
|
|
/* The exponent of 1.0 */
|
|
#define EXONE (0x3fff)
|
|
|
|
|
|
#define mtherr(x,y)
|
|
|
|
|
|
extern long double strtold (const char * __restrict__ s, char ** __restrict__ se);
|
|
extern int __asctoe64(const char * __restrict__ ss,
|
|
short unsigned int * __restrict__ y);
|
|
extern void __emul(const short unsigned int * a,
|
|
const short unsigned int * b,
|
|
short unsigned int * c);
|
|
extern int __ecmp(const short unsigned int * __restrict__ a,
|
|
const short unsigned int * __restrict__ b);
|
|
extern int __enormlz(short unsigned int *x);
|
|
extern int __eshift(short unsigned int *x, int sc);
|
|
extern void __eaddm(const short unsigned int * __restrict__ x,
|
|
short unsigned int * __restrict__ y);
|
|
extern void __esubm(const short unsigned int * __restrict__ x,
|
|
short unsigned int * __restrict__ y);
|
|
extern void __emdnorm(short unsigned int *s, int lost, int subflg,
|
|
long int exp, int rcntrl, const int rndprc);
|
|
extern void __toe64(short unsigned int * __restrict__ a,
|
|
short unsigned int * __restrict__ b);
|
|
extern int __edivm(short unsigned int * __restrict__ den,
|
|
short unsigned int * __restrict__ num);
|
|
extern int __emulm(const short unsigned int * __restrict__ a,
|
|
short unsigned int * __restrict__ b);
|
|
extern void __emovi(const short unsigned int * __restrict__ a,
|
|
short unsigned int * __restrict__ b);
|
|
extern void __emovo(const short unsigned int * __restrict__ a,
|
|
short unsigned int * __restrict__ b);
|
|
|
|
#if USE_LDTOA
|
|
|
|
extern char * _IO_ldtoa(long double, int, int, int *, int *, char **);
|
|
extern void _IO_ldtostr(long double *x, char *string, int ndigs,
|
|
int flags, char fmt);
|
|
|
|
extern void __eiremain(short unsigned int * __restrict__ den,
|
|
short unsigned int *__restrict__ num,
|
|
short unsigned int *__restrict__ equot);
|
|
extern void __efloor(short unsigned int *x, short unsigned int *y);
|
|
extern void __eadd1(const short unsigned int * __restrict__ a,
|
|
const short unsigned int * __restrict__ b,
|
|
short unsigned int * __restrict__ c,
|
|
int subflg);
|
|
extern void __esub(const short unsigned int *a, const short unsigned int *b,
|
|
short unsigned int *c);
|
|
extern void __ediv(const short unsigned int *a, const short unsigned int *b,
|
|
short unsigned int *c);
|
|
extern void __e64toe(short unsigned int *pe, short unsigned int *y);
|
|
|
|
|
|
#endif
|
|
|
|
static __inline__ int __eisneg(const short unsigned int *x);
|
|
static __inline__ int __eisinf(const short unsigned int *x);
|
|
static __inline__ int __eisnan(const short unsigned int *x);
|
|
static __inline__ int __eiszero(const short unsigned int *a);
|
|
static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
|
|
register short unsigned int * __restrict__ b);
|
|
static __inline__ void __eclear(register short unsigned int *x);
|
|
static __inline__ void __ecleaz(register short unsigned int *xi);
|
|
static __inline__ void __ecleazs(register short unsigned int *xi);
|
|
static __inline__ int __eiisinf(const short unsigned int *x);
|
|
static __inline__ int __eiisnan(const short unsigned int *x);
|
|
static __inline__ int __eiiszero(const short unsigned int *x);
|
|
static __inline__ void __enan_64(short unsigned int *nan);
|
|
static __inline__ void __enan_NBITS (short unsigned int *nan);
|
|
static __inline__ void __enan_NI16 (short unsigned int *nan);
|
|
static __inline__ void __einfin(register short unsigned int *x);
|
|
static __inline__ void __eneg(short unsigned int *x);
|
|
static __inline__ void __eshup1(register short unsigned int *x);
|
|
static __inline__ void __eshup8(register short unsigned int *x);
|
|
static __inline__ void __eshup6(register short unsigned int *x);
|
|
static __inline__ void __eshdn1(register short unsigned int *x);
|
|
static __inline__ void __eshdn8(register short unsigned int *x);
|
|
static __inline__ void __eshdn6(register short unsigned int *x);
|
|
|
|
|
|
|
|
/* Intel IEEE, low order words come first:
|
|
*/
|
|
#define IBMPC 1
|
|
|
|
/* Define 1 for ANSI C atan2() function
|
|
* See atan.c and clog.c.
|
|
*/
|
|
#define ANSIC 1
|
|
|
|
/*define VOLATILE volatile*/
|
|
#define VOLATILE
|
|
|
|
/* For 12-byte long doubles on an i386, pad a 16-bit short 0
|
|
* to the end of real constants initialized by integer arrays.
|
|
*
|
|
* #define XPD 0,
|
|
*
|
|
* Otherwise, the type is 10 bytes long and XPD should be
|
|
* defined blank.
|
|
*
|
|
* #define XPD
|
|
*/
|
|
#define XPD 0,
|
|
/* #define XPD */
|
|
#define NANS
|
|
|
|
/* NaN's require infinity support. */
|
|
#ifdef NANS
|
|
#ifndef INFINITY
|
|
#define INFINITY
|
|
#endif
|
|
#endif
|
|
|
|
/* This handles 64-bit long ints. */
|
|
#define LONGBITS (8 * sizeof(long))
|
|
|
|
|
|
#define NTEN 12
|
|
#define MAXP 4096
|
|
|
|
extern const unsigned short __etens[NTEN + 1][NE];
|
|
|
|
/*
|
|
; Clear out entire external format number.
|
|
;
|
|
; unsigned short x[];
|
|
; eclear( x );
|
|
*/
|
|
|
|
static __inline__ void __eclear(register short unsigned int *x)
|
|
{
|
|
memset(x, 0, NE * sizeof(unsigned short));
|
|
}
|
|
|
|
|
|
/* Move external format number from a to b.
|
|
*
|
|
* emov( a, b );
|
|
*/
|
|
|
|
static __inline__ void __emov(register const short unsigned int * __restrict__ a,
|
|
register short unsigned int * __restrict__ b)
|
|
{
|
|
memcpy(b, a, NE * sizeof(unsigned short));
|
|
}
|
|
|
|
|
|
/*
|
|
; Negate external format number
|
|
;
|
|
; unsigned short x[NE];
|
|
; eneg( x );
|
|
*/
|
|
|
|
static __inline__ void __eneg(short unsigned int *x)
|
|
{
|
|
|
|
#ifdef NANS
|
|
if( __eisnan(x) )
|
|
return;
|
|
#endif
|
|
x[NE-1] ^= 0x8000; /* Toggle the sign bit */
|
|
}
|
|
|
|
|
|
/* Return 1 if external format number is negative,
|
|
* else return zero.
|
|
*/
|
|
static __inline__ int __eisneg(const short unsigned int *x)
|
|
{
|
|
|
|
#ifdef NANS
|
|
if( __eisnan(x) )
|
|
return( 0 );
|
|
#endif
|
|
if( x[NE-1] & 0x8000 )
|
|
return( 1 );
|
|
else
|
|
return( 0 );
|
|
}
|
|
|
|
|
|
/* Return 1 if external format number has maximum possible exponent,
|
|
* else return zero.
|
|
*/
|
|
static __inline__ int __eisinf(const short unsigned int *x)
|
|
{
|
|
|
|
if( (x[NE-1] & 0x7fff) == 0x7fff )
|
|
{
|
|
#ifdef NANS
|
|
if( __eisnan(x) )
|
|
return( 0 );
|
|
#endif
|
|
return( 1 );
|
|
}
|
|
else
|
|
return( 0 );
|
|
}
|
|
|
|
/* Check if e-type number is not a number.
|
|
*/
|
|
static __inline__ int __eisnan(const short unsigned int *x)
|
|
{
|
|
#ifdef NANS
|
|
int i;
|
|
/* NaN has maximum __exponent */
|
|
if( (x[NE-1] & 0x7fff) == 0x7fff )
|
|
/* ... and non-zero significand field. */
|
|
for( i=0; i<NE-1; i++ )
|
|
{
|
|
if( *x++ != 0 )
|
|
return (1);
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
; Fill __entire number, including __exponent and significand, with
|
|
; largest possible number. These programs implement a saturation
|
|
; value that is an ordinary, legal number. A special value
|
|
; "infinity" may also be implemented; this would require tests
|
|
; for that value and implementation of special rules for arithmetic
|
|
; operations involving inifinity.
|
|
*/
|
|
|
|
static __inline__ void __einfin(register short unsigned int *x)
|
|
{
|
|
register int i;
|
|
|
|
#ifdef INFINITY
|
|
for( i=0; i<NE-1; i++ )
|
|
*x++ = 0;
|
|
*x |= 32767;
|
|
#else
|
|
for( i=0; i<NE-1; i++ )
|
|
*x++ = 0xffff;
|
|
*x |= 32766;
|
|
*(x-5) = 0;
|
|
#endif
|
|
}
|
|
|
|
/* Clear out internal format number.
|
|
*/
|
|
|
|
static __inline__ void __ecleaz(register short unsigned int *xi)
|
|
{
|
|
memset(xi, 0, NI * sizeof(unsigned short));
|
|
}
|
|
|
|
/* same, but don't touch the sign. */
|
|
|
|
static __inline__ void __ecleazs(register short unsigned int *xi)
|
|
{
|
|
++xi;
|
|
memset(xi, 0, (NI-1) * sizeof(unsigned short));
|
|
}
|
|
|
|
|
|
|
|
/* Move internal format number from a to b.
|
|
*/
|
|
static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
|
|
register short unsigned int * __restrict__ b)
|
|
{
|
|
memcpy(b, a, (NI-1) * sizeof(unsigned short));
|
|
b[NI-1]=0;
|
|
}
|
|
|
|
/* Return nonzero if internal format number is a NaN.
|
|
*/
|
|
|
|
static __inline__ int __eiisnan (const short unsigned int *x)
|
|
{
|
|
int i;
|
|
|
|
if( (x[E] & 0x7fff) == 0x7fff )
|
|
{
|
|
for( i=M+1; i<NI; i++ )
|
|
{
|
|
if( x[i] != 0 )
|
|
return(1);
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/* Return nonzero if external format number is zero. */
|
|
|
|
static __inline__ int
|
|
__eiszero(const short unsigned int * a)
|
|
{
|
|
if (*((long double*) a) == 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/* Return nonzero if internal format number is zero. */
|
|
|
|
static __inline__ int
|
|
__eiiszero(const short unsigned int * ai)
|
|
{
|
|
int i;
|
|
/* skip the sign word */
|
|
for( i=1; i<NI-1; i++ )
|
|
{
|
|
if( ai[i] != 0 )
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
/* Return nonzero if internal format number is infinite. */
|
|
|
|
static __inline__ int
|
|
__eiisinf (const unsigned short *x)
|
|
{
|
|
|
|
#ifdef NANS
|
|
if (__eiisnan (x))
|
|
return (0);
|
|
#endif
|
|
if ((x[E] & 0x7fff) == 0x7fff)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
; Compare significands of numbers in internal format.
|
|
; Guard words are included in the comparison.
|
|
;
|
|
; unsigned short a[NI], b[NI];
|
|
; cmpm( a, b );
|
|
;
|
|
; for the significands:
|
|
; returns +1 if a > b
|
|
; 0 if a == b
|
|
; -1 if a < b
|
|
*/
|
|
static __inline__ int __ecmpm(register const short unsigned int * __restrict__ a,
|
|
register const short unsigned int * __restrict__ b)
|
|
{
|
|
int i;
|
|
|
|
a += M; /* skip up to significand area */
|
|
b += M;
|
|
for( i=M; i<NI; i++ )
|
|
{
|
|
if( *a++ != *b++ )
|
|
goto difrnt;
|
|
}
|
|
return(0);
|
|
|
|
difrnt:
|
|
if( *(--a) > *(--b) )
|
|
return(1);
|
|
else
|
|
return(-1);
|
|
}
|
|
|
|
|
|
/*
|
|
; Shift significand down by 1 bit
|
|
*/
|
|
|
|
static __inline__ void __eshdn1(register short unsigned int *x)
|
|
{
|
|
register unsigned short bits;
|
|
int i;
|
|
|
|
x += M; /* point to significand area */
|
|
|
|
bits = 0;
|
|
for( i=M; i<NI; i++ )
|
|
{
|
|
if( *x & 1 )
|
|
bits |= 1;
|
|
*x >>= 1;
|
|
if( bits & 2 )
|
|
*x |= 0x8000;
|
|
bits <<= 1;
|
|
++x;
|
|
}
|
|
}
|
|
|
|
/*
|
|
; Shift significand up by 1 bit
|
|
*/
|
|
|
|
static __inline__ void __eshup1(register short unsigned int *x)
|
|
{
|
|
register unsigned short bits;
|
|
int i;
|
|
|
|
x += NI-1;
|
|
bits = 0;
|
|
|
|
for( i=M; i<NI; i++ )
|
|
{
|
|
if( *x & 0x8000 )
|
|
bits |= 1;
|
|
*x <<= 1;
|
|
if( bits & 2 )
|
|
*x |= 1;
|
|
bits <<= 1;
|
|
--x;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
; Shift significand down by 8 bits
|
|
*/
|
|
|
|
static __inline__ void __eshdn8(register short unsigned int *x)
|
|
{
|
|
register unsigned short newbyt, oldbyt;
|
|
int i;
|
|
|
|
x += M;
|
|
oldbyt = 0;
|
|
for( i=M; i<NI; i++ )
|
|
{
|
|
newbyt = *x << 8;
|
|
*x >>= 8;
|
|
*x |= oldbyt;
|
|
oldbyt = newbyt;
|
|
++x;
|
|
}
|
|
}
|
|
|
|
/*
|
|
; Shift significand up by 8 bits
|
|
*/
|
|
|
|
static __inline__ void __eshup8(register short unsigned int *x)
|
|
{
|
|
int i;
|
|
register unsigned short newbyt, oldbyt;
|
|
|
|
x += NI-1;
|
|
oldbyt = 0;
|
|
|
|
for( i=M; i<NI; i++ )
|
|
{
|
|
newbyt = *x >> 8;
|
|
*x <<= 8;
|
|
*x |= oldbyt;
|
|
oldbyt = newbyt;
|
|
--x;
|
|
}
|
|
}
|
|
|
|
/*
|
|
; Shift significand up by 16 bits
|
|
*/
|
|
|
|
static __inline__ void __eshup6(register short unsigned int *x)
|
|
{
|
|
int i;
|
|
register unsigned short *p;
|
|
|
|
p = x + M;
|
|
x += M + 1;
|
|
|
|
for( i=M; i<NI-1; i++ )
|
|
*p++ = *x++;
|
|
|
|
*p = 0;
|
|
}
|
|
|
|
/*
|
|
; Shift significand down by 16 bits
|
|
*/
|
|
|
|
static __inline__ void __eshdn6(register short unsigned int *x)
|
|
{
|
|
int i;
|
|
register unsigned short *p;
|
|
|
|
x += NI-1;
|
|
p = x + 1;
|
|
|
|
for( i=M; i<NI-1; i++ )
|
|
*(--p) = *(--x);
|
|
|
|
*(--p) = 0;
|
|
}
|
|
|
|
/*
|
|
; Add significands
|
|
; x + y replaces y
|
|
*/
|
|
|
|
static __inline__ void __enan_64(unsigned short* nan)
|
|
{
|
|
static const unsigned short nan64[6]
|
|
= {0, 0, 0, 0xc000, 0xffff, 0};
|
|
nan = (unsigned short*) nan64;
|
|
return;
|
|
}
|
|
|
|
static __inline__ void __enan_NBITS(unsigned short* nan)
|
|
{
|
|
int i;
|
|
for( i=0; i<NE-2; i++ )
|
|
*nan++ = 0;
|
|
*nan++ = 0xc000;
|
|
*nan++ = 0x7fff;
|
|
return;
|
|
}
|
|
|
|
static __inline__ void __enan_NI16(unsigned short* nan)
|
|
{
|
|
int i;
|
|
*nan++ = 0;
|
|
*nan = 0x7fff;
|
|
*nan = 0;
|
|
*nan = 0xc000;
|
|
for( i=4; i<NI; i++ )
|
|
*nan++ = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
#endif /* _CEPHES_EMATH_H */
|
|
|