118 lines
2.4 KiB
C
118 lines
2.4 KiB
C
|
|
/* @(#)z_tanh.c 1.0 98/08/13 */
|
|
/*****************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
*****************************************************************/
|
|
|
|
/*
|
|
|
|
FUNCTION
|
|
<<tanh>>, <<tanhf>>---hyperbolic tangent
|
|
|
|
INDEX
|
|
tanh
|
|
INDEX
|
|
tanhf
|
|
|
|
ANSI_SYNOPSIS
|
|
#include <math.h>
|
|
double tanh(double <[x]>);
|
|
float tanhf(float <[x]>);
|
|
|
|
TRAD_SYNOPSIS
|
|
#include <math.h>
|
|
double tanh(<[x]>)
|
|
double <[x]>;
|
|
|
|
float tanhf(<[x]>)
|
|
float <[x]>;
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
<<tanh>> computes the hyperbolic tangent of
|
|
the argument <[x]>. Angles are specified in radians.
|
|
|
|
<<tanh(<[x]>)>> is defined as
|
|
. sinh(<[x]>)/cosh(<[x]>)
|
|
|
|
<<tanhf>> is identical, save that it takes and returns <<float>> values.
|
|
|
|
RETURNS
|
|
The hyperbolic tangent of <[x]> is returned.
|
|
|
|
PORTABILITY
|
|
<<tanh>> is ANSI C. <<tanhf>> is an extension.
|
|
|
|
*/
|
|
|
|
/******************************************************************
|
|
* Hyperbolic Tangent
|
|
*
|
|
* Input:
|
|
* x - floating point value
|
|
*
|
|
* Output:
|
|
* hyperbolic tangent of x
|
|
*
|
|
* Description:
|
|
* This routine calculates hyperbolic tangent.
|
|
*
|
|
*****************************************************************/
|
|
|
|
#include <float.h>
|
|
#include "fdlibm.h"
|
|
#include "zmath.h"
|
|
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
|
|
static const double LN3_OVER2 = 0.54930614433405484570;
|
|
static const double p[] = { -0.16134119023996228053e+4,
|
|
-0.99225929672236083313e+2,
|
|
-0.96437492777225469787 };
|
|
static const double q[] = { 0.48402357071988688686e+4,
|
|
0.22337720718962312926e+4,
|
|
0.11274474380534949335e+3 };
|
|
|
|
double
|
|
_DEFUN (tanh, (double),
|
|
double x)
|
|
{
|
|
double f, res, g, P, Q, R;
|
|
|
|
f = fabs (x);
|
|
|
|
/* Check if the input is too big. */
|
|
if (f > BIGX)
|
|
res = 1.0;
|
|
|
|
else if (f > LN3_OVER2)
|
|
res = 1.0 - 2.0 / (exp (2 * f) + 1.0);
|
|
|
|
/* Check if the input is too small. */
|
|
else if (f < z_rooteps)
|
|
res = f;
|
|
|
|
/* Calculate the Taylor series. */
|
|
else
|
|
{
|
|
g = f * f;
|
|
|
|
P = (p[2] * g + p[1]) * g + p[0];
|
|
Q = ((g + q[2]) * g + q[1]) * g + q[0];
|
|
R = g * (P / Q);
|
|
|
|
res = f + f * R;
|
|
}
|
|
|
|
if (x < 0.0)
|
|
res = -res;
|
|
|
|
return (res);
|
|
}
|
|
|
|
#endif /* _DOUBLE_IS_32BITS */
|