4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-19 04:49:25 +08:00
newlib-cygwin/newlib/libm/math/kf_rem_pio2.c
Fabian Schriever d4bcecb3e9 Fix error in float trig. function range reduction
The single-precision trigonometric functions show rather high errors in
specific ranges starting at about 30000 radians. For example the sinf
procedure produces an error of 7626.55 ULP with the input
5.195880078125e+04 (0x474AF6CD) (compared with MPFR in 128bit
precision). For the test we used 100k values evenly spaced in the range
of [30k, 70k]. The issues are periodic at higher ranges.

This error was introduced when the double precision range reduction was
first converted to float. The shift by 8 bits always returns 0 as iq is
never higher than 255.

The fix reduces the error of the example above to 0.45 ULP, highest
error within the test set fell to 1.31 ULP, which is not perfect, but
still a significant improvement. Testing other previously erroneous
ranges no longer show particularly large accuracy errors.
2020-03-03 16:45:22 +01:00

210 lines
5.1 KiB
C

/* kf_rem_pio2.c -- float version of k_rem_pio2.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
/* In the float version, the input parameter x contains 8 bit
integers, not 24 bit integers. 113 bit precision is not supported. */
#ifdef __STDC__
static const int init_jk[] = {4,7,9}; /* initial value for jk */
#else
static int init_jk[] = {4,7,9};
#endif
#ifdef __STDC__
static const float PIo2[] = {
#else
static float PIo2[] = {
#endif
1.5703125000e+00, /* 0x3fc90000 */
4.5776367188e-04, /* 0x39f00000 */
2.5987625122e-05, /* 0x37da0000 */
7.5437128544e-08, /* 0x33a20000 */
6.0026650317e-11, /* 0x2e840000 */
7.3896444519e-13, /* 0x2b500000 */
5.3845816694e-15, /* 0x27c20000 */
5.6378512969e-18, /* 0x22d00000 */
8.3009228831e-20, /* 0x1fc40000 */
3.2756352257e-22, /* 0x1bc60000 */
6.3331015649e-25, /* 0x17440000 */
};
#ifdef __STDC__
static const float
#else
static float
#endif
zero = 0.0,
one = 1.0,
two8 = 2.5600000000e+02, /* 0x43800000 */
twon8 = 3.9062500000e-03; /* 0x3b800000 */
#ifdef __STDC__
int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const __int32_t *ipio2)
#else
int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2)
float x[], y[]; int e0,nx,prec; __int32_t ipio2[];
#endif
{
__int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
float z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/8; if(jv<0) jv=0;
q0 = e0-8*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0;i<=jk;i++) {
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
fw = (float)((__int32_t)(twon8* z));
iq[i] = (__int32_t)(z-two8*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbnf(z,(int)q0); /* actual value of z */
z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */
n = (__int32_t) z;
z -= (float)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(8-q0)); n += i;
iq[jz-1] -= i<<(8-q0);
ih = iq[jz-1]>>(7-q0);
}
else if(q0==0) ih = iq[jz-1]>>7;
else if(z>=(float)0.5) ih=2;
if(ih>0) { /* q > 0.5 */
n += 1; carry = 0;
for(i=0;i<jz ;i++) { /* compute 1-q */
j = iq[i];
if(carry==0) {
if(j!=0) {
carry = 1; iq[i] = 0x100- j;
}
} else iq[i] = 0xff - j;
}
if(q0>0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7f; break;
case 2:
iq[jz-1] &= 0x3f; break;
}
}
if(ih==2) {
z = one - z;
if(carry!=0) z -= scalbnf(one,(int)q0);
}
}
/* check if recomputation is needed */
if(z==zero) {
j = 0;
for (i=jz-1;i>=jk;i--) j |= iq[i];
if(j==0) { /* need recomputation */
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (float) ipio2[jv+i];
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if(z==(float)0.0) {
jz -= 1; q0 -= 8;
while(iq[jz]==0) { jz--; q0-=8;}
} else { /* break z into 8-bit if necessary */
z = scalbnf(z,-(int)q0);
if(z>=two8) {
fw = (float)((__int32_t)(twon8*z));
iq[jz] = (__int32_t)(z-two8*fw);
jz += 1; q0 += 8;
iq[jz] = (__int32_t) fw;
} else iq[jz] = (__int32_t) z ;
}
/* convert integer "bit" chunk to floating-point value */
fw = scalbnf(one,(int)q0);
for(i=jz;i>=0;i--) {
q[i] = fw*(float)iq[i]; fw*=twon8;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz;i>=0;i--) {
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}