4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-26 17:17:20 +08:00
Jeff Johnston 70317d8506 2007-10-17 Jeff Johnston <jjohnstn@redhat.com>
* libm/mathfp/s_logarithm.c: Fix error introduced by previous
        fix when handling negative input values.  Make function
        consistent with math directory and glibc version such that
        inf and nan values return inf and nan respectively with no
        errno setting.
        * libm/mathfp/sf_logarithm.c: Ditto.
        * libm/math/w_log.c: Set errno to ERANGE when input is 0.0.
        * libm/math/wf_log.c: Ditto.
        * libm/math/w_log10.c: Ditto.
        * libm/math/wf_log10.c: Ditto.
2007-10-18 00:03:32 +00:00

149 lines
3.4 KiB
C

/* @(#)z_logarithm.c 1.0 98/08/13 */
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/*
FUNCTION
<<log>>, <<logf>>, <<log10>>, <<log10f>>, <<logarithm>>, <<logarithmf>>---natural or base 10 logarithms
INDEX
log
INDEX
logf
INDEX
log10
INDEX
log10f
ANSI_SYNOPSIS
#include <math.h>
double log(double <[x]>);
float logf(float <[x]>);
double log10(double <[x]>);
float log10f(float <[x]>);
TRAD_SYNOPSIS
#include <math.h>
double log(<[x]>);
double <[x]>;
float logf(<[x]>);
float <[x]>;
double log10(<[x]>);
double <[x]>;
float log10f(<[x]>);
float <[x]>;
DESCRIPTION
Return the natural or base 10 logarithm of <[x]>, that is, its logarithm base e
(where e is the base of the natural system of logarithms, 2.71828@dots{}) or
base 10.
<<log>> and <<logf>> are identical save for the return and argument types.
<<log10>> and <<log10f>> are identical save for the return and argument types.
RETURNS
Normally, returns the calculated value. When <[x]> is zero, the
returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
When <[x]> is negative, the returned value is <<-HUGE_VAL>> and
<<errno>> is set to <<EDOM>>. You can control the error behavior via
<<matherr>>.
PORTABILITY
<<log>> is ANSI. <<logf>> is an extension.
<<log10>> is ANSI. <<log10f>> is an extension.
*/
/******************************************************************
* Logarithm
*
* Input:
* x - floating point value
* ten - indicates base ten numbers
*
* Output:
* logarithm of x
*
* Description:
* This routine calculates logarithms.
*
*****************************************************************/
#include "fdlibm.h"
#include "zmath.h"
#ifndef _DOUBLE_IS_32BITS
static const double a[] = { -0.64124943423745581147e+02,
0.16383943563021534222e+02,
-0.78956112887481257267 };
static const double b[] = { -0.76949932108494879777e+03,
0.31203222091924532844e+03,
-0.35667977739034646171e+02 };
static const double C1 = 22713.0 / 32768.0;
static const double C2 = 1.428606820309417232e-06;
static const double C3 = 0.43429448190325182765;
double
_DEFUN (logarithm, (double, int),
double x _AND
int ten)
{
int N;
double f, w, z;
/* Check for range and domain errors here. */
if (x == 0.0)
{
errno = ERANGE;
return (-z_infinity.d);
}
else if (x < 0.0)
{
errno = EDOM;
return (z_notanum.d);
}
else if (!isfinite(x))
{
if (isnan(x))
return (z_notanum.d);
else
return (z_infinity.d);
}
/* Get the exponent and mantissa where x = f * 2^N. */
f = frexp (x, &N);
z = f - 0.5;
if (f > __SQRT_HALF)
z = (z - 0.5) / (f * 0.5 + 0.5);
else
{
N--;
z /= (z * 0.5 + 0.5);
}
w = z * z;
/* Use Newton's method with 4 terms. */
z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]);
if (N != 0)
z = (N * C2 + z) + N * C1;
if (ten)
z *= C3;
return (z);
}
#endif /* _DOUBLE_IS_32BITS */