4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-19 12:59:21 +08:00
Corinna Vinschen 792e51b721 Add missing long double functions to Cygwin
This patch adds the long double functions missing in newlib to Cygwin.
Apart from some self-written additions (exp10l, finite{f,l}, isinf{f,l},
isnan{f,l}, pow10l) the files are taken from the Mingw-w64 math lib.
Minor changes were required, e.g. substitue _WIN64 with __x86_64__ and
fixing __FLT_RPT_DOMAIN/__FLT_RPT_ERANGE for Cygwin.

Cygwin:
	* math: New subdir with math functions.
	* Makefile.in (VPATH): Add math subdir.
	(MATH_OFILES): List of object files collected from building files in
	math subdir.
	(DLL_OFILES): Add $(MATH_OFILES).
	${CURDIR}/libm.a: Add $(MATH_OFILES) to build.
	* common.din: Add new functions from math subdir.
	* i686.din: Align to new math subdir.  Remove functions now commonly
	available.
	* x86_64.din: Ditto.
	* math.h: math.h wrapper to define mingw structs used in some files in
	math subdir.
	* include/cygwin/version.h: Bump API minor version.

newlib:
	* libc/include/complex.h: Add prototypes for complex long double
	functions.  Only define for Cygwin.
	* libc/include/math.h: Additionally enable prototypes of long double
	functions for Cygwin.  Add Cygwin-only prototypes for dreml, sincosl,
	exp10l and pow10l.  Explain why we don't add them to newlib.
	* libc/include/tgmath.h: Enable long double handling on Cygwin.

Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2016-03-29 14:43:55 +02:00

81 lines
1.6 KiB
C

/**
* This file has no copyright assigned and is placed in the Public Domain.
* This file is part of the mingw-w64 runtime package.
* No warranty is given; refer to the file DISCLAIMER.PD within this package.
*/
#include <math.h>
static const long double CBRT2 = 1.2599210498948731647672L;
static const long double CBRT4 = 1.5874010519681994747517L;
static const long double CBRT2I = 0.79370052598409973737585L;
static const long double CBRT4I = 0.62996052494743658238361L;
long double cbrtl(long double x)
{
int e, rem, sign;
long double z;
if (!isfinite (x) || x == 0.0L)
return (x);
if (x > 0)
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexpl(x, &e);
/* Approximate cube root of number between .5 and 1,
* peak relative error = 1.2e-6
*/
x = (((( 1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x
+ 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if (e >= 0)
{
rem = e;
e /= 3;
rem -= 3*e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexpl(x, e);
/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
if (sign < 0)
x = -x;
return (x);
}