mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-02-18 23:12:15 +08:00
In order to efficiently serve web traffic on a NUMA machine, one must avoid as many NUMA domain crossings as possible. With SO_REUSEPORT_LB, a number of workers can share a listen socket. However, even if a worker sets affinity to a core or set of cores on a NUMA domain, it will receive connections associated with all NUMA domains in the system. This will lead to cross-domain traffic when the server writes to the socket or calls sendfile(), and memory is allocated on the server's local NUMA node, but transmitted on the NUMA node associated with the TCP connection. Similarly, when the server reads from the socket, he will likely be reading memory allocated on the NUMA domain associated with the TCP connection. This change provides a new socket ioctl, TCP_REUSPORT_LB_NUMA. A server can now tell the kernel to filter traffic so that only incoming connections associated with the desired NUMA domain are given to the server. (Of course, in the case where there are no servers sharing the listen socket on some domain, then as a fallback, traffic will be hashed as normal to all servers sharing the listen socket regardless of domain). This allows a server to deal only with traffic that is local to its NUMA domain, and avoids cross-domain traffic in most cases. This patch, and a corresponding small patch to nginx to use TCP_REUSPORT_LB_NUMA allows us to serve 190Gb/s of kTLS encrypted https media content from dual-socket Xeons with only 13% (as measured by pcm.x) cross domain traffic on the memory controller. Reviewed by: jhb, bz (earlier version), bcr (man page) Tested by: gonzo Sponsored by: Netfix Differential Revision: https://reviews.freebsd.org/D21636
…
…
…
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
61.5%
Makefile
19.6%
C++
10.4%
Assembly
4.9%
M4
1%
Other
2.4%