60 lines
1.9 KiB
C
60 lines
1.9 KiB
C
/* From: @(#)k_cos.c 1.3 95/01/18 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* ld128 version of k_cos.c. See ../src/k_cos.c for most comments.
|
|
*/
|
|
|
|
#include "math_private.h"
|
|
|
|
/*
|
|
* Domain [-0.7854, 0.7854], range ~[-1.17e-39, 1.19e-39]:
|
|
* |cos(x) - c(x))| < 2**-129.3
|
|
*
|
|
* 113-bit precision requires more care than 64-bit precision, since
|
|
* simple methods give a minimax polynomial with coefficient for x^2
|
|
* that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
|
|
* ../ld80/k_cosl.c for more details.
|
|
*/
|
|
static const double
|
|
one = 1.0;
|
|
static const long double
|
|
C1 = 4.16666666666666666666666666666666667e-02L,
|
|
C2 = -1.38888888888888888888888888888888834e-03L,
|
|
C3 = 2.48015873015873015873015873015446795e-05L,
|
|
C4 = -2.75573192239858906525573190949988493e-07L,
|
|
C5 = 2.08767569878680989792098886701451072e-09L,
|
|
C6 = -1.14707455977297247136657111139971865e-11L,
|
|
C7 = 4.77947733238738518870113294139830239e-14L,
|
|
C8 = -1.56192069685858079920640872925306403e-16L,
|
|
C9 = 4.11031762320473354032038893429515732e-19L,
|
|
C10= -8.89679121027589608738005163931958096e-22L,
|
|
C11= 1.61171797801314301767074036661901531e-24L,
|
|
C12= -2.46748624357670948912574279501044295e-27L;
|
|
|
|
long double
|
|
__kernel_cosl(long double x, long double y)
|
|
{
|
|
long double hz,z,r,w;
|
|
|
|
z = x*x;
|
|
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+
|
|
z*(C8+z*(C9+z*(C10+z*(C11+z*C12)))))))))));
|
|
hz = 0.5*z;
|
|
w = one-hz;
|
|
return w + (((one-w)-hz) + (z*r-x*y));
|
|
}
|