136 lines
3.9 KiB
C
136 lines
3.9 KiB
C
/* From: @(#)e_rem_pio2.c 1.4 95/01/18 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*
|
|
* Optimized by Bruce D. Evans.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/* ld128 version of __ieee754_rem_pio2l(x,y)
|
|
*
|
|
* return the remainder of x rem pi/2 in y[0]+y[1]
|
|
* use __kernel_rem_pio2()
|
|
*/
|
|
|
|
#include <float.h>
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
#include "../ld/fpmath.h"
|
|
|
|
#define BIAS (LDBL_MAX_EXP - 1)
|
|
|
|
/*
|
|
* XXX need to verify that nonzero integer multiples of pi/2 within the
|
|
* range get no closer to a long double than 2**-140, or that
|
|
* ilogb(x) + ilogb(min_delta) < 45 - -140.
|
|
*/
|
|
/*
|
|
* invpio2: 113 bits of 2/pi
|
|
* pio2_1: first 68 bits of pi/2
|
|
* pio2_1t: pi/2 - pio2_1
|
|
* pio2_2: second 68 bits of pi/2
|
|
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
|
* pio2_3: third 68 bits of pi/2
|
|
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
|
*/
|
|
|
|
static const double
|
|
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
|
two24 = 1.67772160000000000000e+07; /* 0x41700000, 0x00000000 */
|
|
|
|
static const long double
|
|
invpio2 = 6.3661977236758134307553505349005747e-01L, /* 0x145f306dc9c882a53f84eafa3ea6a.0p-113 */
|
|
pio2_1 = 1.5707963267948966192292994253909555e+00L, /* 0x1921fb54442d18469800000000000.0p-112 */
|
|
pio2_1t = 2.0222662487959507323996846200947577e-21L, /* 0x13198a2e03707344a4093822299f3.0p-181 */
|
|
pio2_2 = 2.0222662487959507323994779168837751e-21L, /* 0x13198a2e03707344a400000000000.0p-181 */
|
|
pio2_2t = 2.0670321098263988236496903051604844e-43L, /* 0x127044533e63a0105df531d89cd91.0p-254 */
|
|
pio2_3 = 2.0670321098263988236499468110329591e-43L, /* 0x127044533e63a0105e00000000000.0p-254 */
|
|
pio2_3t = -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */
|
|
|
|
static inline __always_inline int
|
|
__ieee754_rem_pio2l(long double x, long double *y)
|
|
{
|
|
union IEEEl2bits u,u1;
|
|
long double z,w,t,r,fn;
|
|
double tx[5],ty[3];
|
|
int64_t n;
|
|
int e0,ex,i,j,nx;
|
|
int16_t expsign;
|
|
|
|
u.e = x;
|
|
expsign = u.xbits.expsign;
|
|
ex = expsign & 0x7fff;
|
|
if (ex < BIAS + 45 || ex == BIAS + 45 &&
|
|
u.bits.manh < 0x921fb54442d1LL) {
|
|
/* |x| ~< 2^45*(pi/2), medium size */
|
|
/* TODO: use only double precision for fn, as in expl(). */
|
|
fn = rnintl(x * invpio2);
|
|
n = i64rint(fn);
|
|
r = x-fn*pio2_1;
|
|
w = fn*pio2_1t; /* 1st round good to 180 bit */
|
|
{
|
|
union IEEEl2bits u2;
|
|
int ex1;
|
|
j = ex;
|
|
y[0] = r-w;
|
|
u2.e = y[0];
|
|
ex1 = u2.xbits.expsign & 0x7fff;
|
|
i = j-ex1;
|
|
if(i>51) { /* 2nd iteration needed, good to 248 */
|
|
t = r;
|
|
w = fn*pio2_2;
|
|
r = t-w;
|
|
w = fn*pio2_2t-((t-r)-w);
|
|
y[0] = r-w;
|
|
u2.e = y[0];
|
|
ex1 = u2.xbits.expsign & 0x7fff;
|
|
i = j-ex1;
|
|
if(i>119) { /* 3rd iteration need, 316 bits acc */
|
|
t = r; /* will cover all possible cases */
|
|
w = fn*pio2_3;
|
|
r = t-w;
|
|
w = fn*pio2_3t-((t-r)-w);
|
|
y[0] = r-w;
|
|
}
|
|
}
|
|
}
|
|
y[1] = (r-y[0])-w;
|
|
return n;
|
|
}
|
|
/*
|
|
* all other (large) arguments
|
|
*/
|
|
if(ex==0x7fff) { /* x is inf or NaN */
|
|
y[0]=y[1]=x-x; return 0;
|
|
}
|
|
/* set z = scalbn(|x|,ilogb(x)-23) */
|
|
u1.e = x;
|
|
e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */
|
|
u1.xbits.expsign = ex - e0;
|
|
z = u1.e;
|
|
for(i=0;i<4;i++) {
|
|
tx[i] = (double)((int32_t)(z));
|
|
z = (z-tx[i])*two24;
|
|
}
|
|
tx[4] = z;
|
|
nx = 5;
|
|
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
|
n = __kernel_rem_pio2(tx,ty,e0,nx,3);
|
|
t = (long double)ty[2] + ty[1];
|
|
r = t + ty[0];
|
|
w = ty[0] - (r - t);
|
|
if(expsign<0) {y[0] = -r; y[1] = -w; return -n;}
|
|
y[0] = r; y[1] = w; return n;
|
|
}
|