925 lines
25 KiB
C
925 lines
25 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
* from: @(#)fdlibm.h 5.1 93/09/24
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _MATH_PRIVATE_H_
|
|
#define _MATH_PRIVATE_H_
|
|
|
|
#include <sys/types.h>
|
|
#include <machine/endian.h>
|
|
|
|
/*
|
|
* The original fdlibm code used statements like:
|
|
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
|
* ix0 = *(n0+(int*)&x); * high word of x *
|
|
* ix1 = *((1-n0)+(int*)&x); * low word of x *
|
|
* to dig two 32 bit words out of the 64 bit IEEE floating point
|
|
* value. That is non-ANSI, and, moreover, the gcc instruction
|
|
* scheduler gets it wrong. We instead use the following macros.
|
|
* Unlike the original code, we determine the endianness at compile
|
|
* time, not at run time; I don't see much benefit to selecting
|
|
* endianness at run time.
|
|
*/
|
|
|
|
/*
|
|
* A union which permits us to convert between a double and two 32 bit
|
|
* ints.
|
|
*/
|
|
|
|
#ifdef __arm__
|
|
#if defined(__VFP_FP__) || defined(__ARM_EABI__)
|
|
#define IEEE_WORD_ORDER BYTE_ORDER
|
|
#else
|
|
#define IEEE_WORD_ORDER BIG_ENDIAN
|
|
#endif
|
|
#else /* __arm__ */
|
|
#define IEEE_WORD_ORDER BYTE_ORDER
|
|
#endif
|
|
|
|
/* A union which permits us to convert between a long double and
|
|
four 32 bit ints. */
|
|
|
|
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
|
|
|
typedef union
|
|
{
|
|
long double value;
|
|
struct {
|
|
u_int32_t mswhi;
|
|
u_int32_t mswlo;
|
|
u_int32_t lswhi;
|
|
u_int32_t lswlo;
|
|
} parts32;
|
|
struct {
|
|
u_int64_t msw;
|
|
u_int64_t lsw;
|
|
} parts64;
|
|
} ieee_quad_shape_type;
|
|
|
|
#endif
|
|
|
|
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
|
|
|
typedef union
|
|
{
|
|
long double value;
|
|
struct {
|
|
u_int32_t lswlo;
|
|
u_int32_t lswhi;
|
|
u_int32_t mswlo;
|
|
u_int32_t mswhi;
|
|
} parts32;
|
|
struct {
|
|
u_int64_t lsw;
|
|
u_int64_t msw;
|
|
} parts64;
|
|
} ieee_quad_shape_type;
|
|
|
|
#endif
|
|
|
|
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
|
|
|
typedef union
|
|
{
|
|
double value;
|
|
struct
|
|
{
|
|
u_int32_t msw;
|
|
u_int32_t lsw;
|
|
} parts;
|
|
struct
|
|
{
|
|
u_int64_t w;
|
|
} xparts;
|
|
} ieee_double_shape_type;
|
|
|
|
#endif
|
|
|
|
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
|
|
|
typedef union
|
|
{
|
|
double value;
|
|
struct
|
|
{
|
|
u_int32_t lsw;
|
|
u_int32_t msw;
|
|
} parts;
|
|
struct
|
|
{
|
|
u_int64_t w;
|
|
} xparts;
|
|
} ieee_double_shape_type;
|
|
|
|
#endif
|
|
|
|
/* Get two 32 bit ints from a double. */
|
|
|
|
#define EXTRACT_WORDS(ix0,ix1,d) \
|
|
do { \
|
|
ieee_double_shape_type ew_u; \
|
|
ew_u.value = (d); \
|
|
(ix0) = ew_u.parts.msw; \
|
|
(ix1) = ew_u.parts.lsw; \
|
|
} while (0)
|
|
|
|
/* Get a 64-bit int from a double. */
|
|
#define EXTRACT_WORD64(ix,d) \
|
|
do { \
|
|
ieee_double_shape_type ew_u; \
|
|
ew_u.value = (d); \
|
|
(ix) = ew_u.xparts.w; \
|
|
} while (0)
|
|
|
|
/* Get the more significant 32 bit int from a double. */
|
|
|
|
#define GET_HIGH_WORD(i,d) \
|
|
do { \
|
|
ieee_double_shape_type gh_u; \
|
|
gh_u.value = (d); \
|
|
(i) = gh_u.parts.msw; \
|
|
} while (0)
|
|
|
|
/* Get the less significant 32 bit int from a double. */
|
|
|
|
#define GET_LOW_WORD(i,d) \
|
|
do { \
|
|
ieee_double_shape_type gl_u; \
|
|
gl_u.value = (d); \
|
|
(i) = gl_u.parts.lsw; \
|
|
} while (0)
|
|
|
|
/* Set a double from two 32 bit ints. */
|
|
|
|
#define INSERT_WORDS(d,ix0,ix1) \
|
|
do { \
|
|
ieee_double_shape_type iw_u; \
|
|
iw_u.parts.msw = (ix0); \
|
|
iw_u.parts.lsw = (ix1); \
|
|
(d) = iw_u.value; \
|
|
} while (0)
|
|
|
|
/* Set a double from a 64-bit int. */
|
|
#define INSERT_WORD64(d,ix) \
|
|
do { \
|
|
ieee_double_shape_type iw_u; \
|
|
iw_u.xparts.w = (ix); \
|
|
(d) = iw_u.value; \
|
|
} while (0)
|
|
|
|
/* Set the more significant 32 bits of a double from an int. */
|
|
|
|
#define SET_HIGH_WORD(d,v) \
|
|
do { \
|
|
ieee_double_shape_type sh_u; \
|
|
sh_u.value = (d); \
|
|
sh_u.parts.msw = (v); \
|
|
(d) = sh_u.value; \
|
|
} while (0)
|
|
|
|
/* Set the less significant 32 bits of a double from an int. */
|
|
|
|
#define SET_LOW_WORD(d,v) \
|
|
do { \
|
|
ieee_double_shape_type sl_u; \
|
|
sl_u.value = (d); \
|
|
sl_u.parts.lsw = (v); \
|
|
(d) = sl_u.value; \
|
|
} while (0)
|
|
|
|
/*
|
|
* A union which permits us to convert between a float and a 32 bit
|
|
* int.
|
|
*/
|
|
|
|
typedef union
|
|
{
|
|
float value;
|
|
/* FIXME: Assumes 32 bit int. */
|
|
unsigned int word;
|
|
} ieee_float_shape_type;
|
|
|
|
/* Get a 32 bit int from a float. */
|
|
|
|
#define GET_FLOAT_WORD(i,d) \
|
|
do { \
|
|
ieee_float_shape_type gf_u; \
|
|
gf_u.value = (d); \
|
|
(i) = gf_u.word; \
|
|
} while (0)
|
|
|
|
/* Set a float from a 32 bit int. */
|
|
|
|
#define SET_FLOAT_WORD(d,i) \
|
|
do { \
|
|
ieee_float_shape_type sf_u; \
|
|
sf_u.word = (i); \
|
|
(d) = sf_u.value; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
|
|
* double.
|
|
*/
|
|
|
|
#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
|
|
do { \
|
|
union IEEEl2bits ew_u; \
|
|
ew_u.e = (d); \
|
|
(ix0) = ew_u.xbits.expsign; \
|
|
(ix1) = ew_u.xbits.man; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
|
|
* long double.
|
|
*/
|
|
|
|
#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
|
|
do { \
|
|
union IEEEl2bits ew_u; \
|
|
ew_u.e = (d); \
|
|
(ix0) = ew_u.xbits.expsign; \
|
|
(ix1) = ew_u.xbits.manh; \
|
|
(ix2) = ew_u.xbits.manl; \
|
|
} while (0)
|
|
|
|
/* Get expsign as a 16 bit int from a long double. */
|
|
|
|
#define GET_LDBL_EXPSIGN(i,d) \
|
|
do { \
|
|
union IEEEl2bits ge_u; \
|
|
ge_u.e = (d); \
|
|
(i) = ge_u.xbits.expsign; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
|
|
* mantissa.
|
|
*/
|
|
|
|
#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
|
|
do { \
|
|
union IEEEl2bits iw_u; \
|
|
iw_u.xbits.expsign = (ix0); \
|
|
iw_u.xbits.man = (ix1); \
|
|
(d) = iw_u.e; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
|
|
* comprising the mantissa.
|
|
*/
|
|
|
|
#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
|
|
do { \
|
|
union IEEEl2bits iw_u; \
|
|
iw_u.xbits.expsign = (ix0); \
|
|
iw_u.xbits.manh = (ix1); \
|
|
iw_u.xbits.manl = (ix2); \
|
|
(d) = iw_u.e; \
|
|
} while (0)
|
|
|
|
/* Set expsign of a long double from a 16 bit int. */
|
|
|
|
#define SET_LDBL_EXPSIGN(d,v) \
|
|
do { \
|
|
union IEEEl2bits se_u; \
|
|
se_u.e = (d); \
|
|
se_u.xbits.expsign = (v); \
|
|
(d) = se_u.e; \
|
|
} while (0)
|
|
|
|
#ifdef __i386__
|
|
/* Long double constants are broken on i386. */
|
|
#define LD80C(m, ex, v) { \
|
|
.xbits.man = __CONCAT(m, ULL), \
|
|
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
|
|
}
|
|
#else
|
|
/* The above works on non-i386 too, but we use this to check v. */
|
|
#define LD80C(m, ex, v) { .e = (v), }
|
|
#endif
|
|
|
|
#ifdef FLT_EVAL_METHOD
|
|
/*
|
|
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
|
*/
|
|
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
|
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
|
#else
|
|
#define STRICT_ASSIGN(type, lval, rval) do { \
|
|
volatile type __lval; \
|
|
\
|
|
if (sizeof(type) >= sizeof(long double)) \
|
|
(lval) = (rval); \
|
|
else { \
|
|
__lval = (rval); \
|
|
(lval) = __lval; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
#endif /* FLT_EVAL_METHOD */
|
|
|
|
/* Support switching the mode to FP_PE if necessary. */
|
|
#if defined(__i386__) && !defined(NO_FPSETPREC)
|
|
#define ENTERI() ENTERIT(long double)
|
|
#define ENTERIT(returntype) \
|
|
returntype __retval; \
|
|
fp_prec_t __oprec; \
|
|
\
|
|
if ((__oprec = fpgetprec()) != FP_PE) \
|
|
fpsetprec(FP_PE)
|
|
#define RETURNI(x) do { \
|
|
__retval = (x); \
|
|
if (__oprec != FP_PE) \
|
|
fpsetprec(__oprec); \
|
|
RETURNF(__retval); \
|
|
} while (0)
|
|
#define ENTERV() \
|
|
fp_prec_t __oprec; \
|
|
\
|
|
if ((__oprec = fpgetprec()) != FP_PE) \
|
|
fpsetprec(FP_PE)
|
|
#define RETURNV() do { \
|
|
if (__oprec != FP_PE) \
|
|
fpsetprec(__oprec); \
|
|
return; \
|
|
} while (0)
|
|
#else
|
|
#define ENTERI()
|
|
#define ENTERIT(x)
|
|
#define RETURNI(x) RETURNF(x)
|
|
#define ENTERV()
|
|
#define RETURNV() return
|
|
#endif
|
|
|
|
/* Default return statement if hack*_t() is not used. */
|
|
#define RETURNF(v) return (v)
|
|
|
|
/*
|
|
* 2sum gives the same result as 2sumF without requiring |a| >= |b| or
|
|
* a == 0, but is slower.
|
|
*/
|
|
#define _2sum(a, b) do { \
|
|
__typeof(a) __s, __w; \
|
|
\
|
|
__w = (a) + (b); \
|
|
__s = __w - (a); \
|
|
(b) = ((a) - (__w - __s)) + ((b) - __s); \
|
|
(a) = __w; \
|
|
} while (0)
|
|
|
|
/*
|
|
* 2sumF algorithm.
|
|
*
|
|
* "Normalize" the terms in the infinite-precision expression a + b for
|
|
* the sum of 2 floating point values so that b is as small as possible
|
|
* relative to 'a'. (The resulting 'a' is the value of the expression in
|
|
* the same precision as 'a' and the resulting b is the rounding error.)
|
|
* |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
|
|
* exponent overflow or underflow must not occur. This uses a Theorem of
|
|
* Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
|
|
* is apparently due to Skewchuk (1997).
|
|
*
|
|
* For this to always work, assignment of a + b to 'a' must not retain any
|
|
* extra precision in a + b. This is required by C standards but broken
|
|
* in many compilers. The brokenness cannot be worked around using
|
|
* STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
|
|
* algorithm would be destroyed by non-null strict assignments. (The
|
|
* compilers are correct to be broken -- the efficiency of all floating
|
|
* point code calculations would be destroyed similarly if they forced the
|
|
* conversions.)
|
|
*
|
|
* Fortunately, a case that works well can usually be arranged by building
|
|
* any extra precision into the type of 'a' -- 'a' should have type float_t,
|
|
* double_t or long double. b's type should be no larger than 'a's type.
|
|
* Callers should use these types with scopes as large as possible, to
|
|
* reduce their own extra-precision and efficiciency problems. In
|
|
* particular, they shouldn't convert back and forth just to call here.
|
|
*/
|
|
#ifdef DEBUG
|
|
#define _2sumF(a, b) do { \
|
|
__typeof(a) __w; \
|
|
volatile __typeof(a) __ia, __ib, __r, __vw; \
|
|
\
|
|
__ia = (a); \
|
|
__ib = (b); \
|
|
assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
|
|
\
|
|
__w = (a) + (b); \
|
|
(b) = ((a) - __w) + (b); \
|
|
(a) = __w; \
|
|
\
|
|
/* The next 2 assertions are weak if (a) is already long double. */ \
|
|
assert((long double)__ia + __ib == (long double)(a) + (b)); \
|
|
__vw = __ia + __ib; \
|
|
__r = __ia - __vw; \
|
|
__r += __ib; \
|
|
assert(__vw == (a) && __r == (b)); \
|
|
} while (0)
|
|
#else /* !DEBUG */
|
|
#define _2sumF(a, b) do { \
|
|
__typeof(a) __w; \
|
|
\
|
|
__w = (a) + (b); \
|
|
(b) = ((a) - __w) + (b); \
|
|
(a) = __w; \
|
|
} while (0)
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Set x += c, where x is represented in extra precision as a + b.
|
|
* x must be sufficiently normalized and sufficiently larger than c,
|
|
* and the result is then sufficiently normalized.
|
|
*
|
|
* The details of ordering are that |a| must be >= |c| (so that (a, c)
|
|
* can be normalized without extra work to swap 'a' with c). The details of
|
|
* the normalization are that b must be small relative to the normalized 'a'.
|
|
* Normalization of (a, c) makes the normalized c tiny relative to the
|
|
* normalized a, so b remains small relative to 'a' in the result. However,
|
|
* b need not ever be tiny relative to 'a'. For example, b might be about
|
|
* 2**20 times smaller than 'a' to give about 20 extra bits of precision.
|
|
* That is usually enough, and adding c (which by normalization is about
|
|
* 2**53 times smaller than a) cannot change b significantly. However,
|
|
* cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
|
|
* significantly relative to b. The caller must ensure that significant
|
|
* cancellation doesn't occur, either by having c of the same sign as 'a',
|
|
* or by having |c| a few percent smaller than |a|. Pre-normalization of
|
|
* (a, b) may help.
|
|
*
|
|
* This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
|
|
* exercise 19). We gain considerable efficiency by requiring the terms to
|
|
* be sufficiently normalized and sufficiently increasing.
|
|
*/
|
|
#define _3sumF(a, b, c) do { \
|
|
__typeof(a) __tmp; \
|
|
\
|
|
__tmp = (c); \
|
|
_2sumF(__tmp, (a)); \
|
|
(b) += (a); \
|
|
(a) = __tmp; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Common routine to process the arguments to nan(), nanf(), and nanl().
|
|
*/
|
|
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
|
|
|
/*
|
|
* Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
|
|
* signaling NaNs into quiet NaNs by setting a quiet bit. We do this
|
|
* because we want to never return a signaling NaN, and also because we
|
|
* don't want the quiet bit to affect the result. Then mix the converted
|
|
* args using the specified operation.
|
|
*
|
|
* When one arg is NaN, the result is typically that arg quieted. When both
|
|
* args are NaNs, the result is typically the quietening of the arg whose
|
|
* mantissa is largest after quietening. When neither arg is NaN, the
|
|
* result may be NaN because it is indeterminate, or finite for subsequent
|
|
* construction of a NaN as the indeterminate 0.0L/0.0L.
|
|
*
|
|
* Technical complications: the result in bits after rounding to the final
|
|
* precision might depend on the runtime precision and/or on compiler
|
|
* optimizations, especially when different register sets are used for
|
|
* different precisions. Try to make the result not depend on at least the
|
|
* runtime precision by always doing the main mixing step in long double
|
|
* precision. Try to reduce dependencies on optimizations by adding the
|
|
* the 0's in different precisions (unless everything is in long double
|
|
* precision).
|
|
*/
|
|
#define nan_mix(x, y) (nan_mix_op((x), (y), +))
|
|
#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
|
|
|
|
#ifdef _COMPLEX_H
|
|
|
|
/*
|
|
* C99 specifies that complex numbers have the same representation as
|
|
* an array of two elements, where the first element is the real part
|
|
* and the second element is the imaginary part.
|
|
*/
|
|
typedef union {
|
|
float complex f;
|
|
float a[2];
|
|
} float_complex;
|
|
typedef union {
|
|
double complex f;
|
|
double a[2];
|
|
} double_complex;
|
|
typedef union {
|
|
long double complex f;
|
|
long double a[2];
|
|
} long_double_complex;
|
|
#define REALPART(z) ((z).a[0])
|
|
#define IMAGPART(z) ((z).a[1])
|
|
|
|
/*
|
|
* Inline functions that can be used to construct complex values.
|
|
*
|
|
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
|
* currently unusable in general since gcc introduces many overflow,
|
|
* underflow, sign and efficiency bugs by rewriting I*y as
|
|
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
|
|
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
|
|
* to -0.0+I*0.0.
|
|
*
|
|
* The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
|
|
* to construct complex values. Compilers that conform to the C99
|
|
* standard require the following functions to avoid the above issues.
|
|
*/
|
|
|
|
#ifndef CMPLXF
|
|
static __inline float complex
|
|
CMPLXF(float x, float y)
|
|
{
|
|
float_complex z;
|
|
|
|
REALPART(z) = x;
|
|
IMAGPART(z) = y;
|
|
return (z.f);
|
|
}
|
|
#endif
|
|
|
|
#ifndef CMPLX
|
|
static __inline double complex
|
|
CMPLX(double x, double y)
|
|
{
|
|
double_complex z;
|
|
|
|
REALPART(z) = x;
|
|
IMAGPART(z) = y;
|
|
return (z.f);
|
|
}
|
|
#endif
|
|
|
|
#ifndef CMPLXL
|
|
static __inline long double complex
|
|
CMPLXL(long double x, long double y)
|
|
{
|
|
long_double_complex z;
|
|
|
|
REALPART(z) = x;
|
|
IMAGPART(z) = y;
|
|
return (z.f);
|
|
}
|
|
#endif
|
|
|
|
#endif /* _COMPLEX_H */
|
|
|
|
/*
|
|
* The rnint() family rounds to the nearest integer for a restricted range
|
|
* range of args (up to about 2**MANT_DIG). We assume that the current
|
|
* rounding mode is FE_TONEAREST so that this can be done efficiently.
|
|
* Extra precision causes more problems in practice, and we only centralize
|
|
* this here to reduce those problems, and have not solved the efficiency
|
|
* problems. The exp2() family uses a more delicate version of this that
|
|
* requires extracting bits from the intermediate value, so it is not
|
|
* centralized here and should copy any solution of the efficiency problems.
|
|
*/
|
|
|
|
static inline double
|
|
rnint(__double_t x)
|
|
{
|
|
/*
|
|
* This casts to double to kill any extra precision. This depends
|
|
* on the cast being applied to a double_t to avoid compiler bugs
|
|
* (this is a cleaner version of STRICT_ASSIGN()). This is
|
|
* inefficient if there actually is extra precision, but is hard
|
|
* to improve on. We use double_t in the API to minimise conversions
|
|
* for just calling here. Note that we cannot easily change the
|
|
* magic number to the one that works directly with double_t, since
|
|
* the rounding precision is variable at runtime on x86 so the
|
|
* magic number would need to be variable. Assuming that the
|
|
* rounding precision is always the default is too fragile. This
|
|
* and many other complications will move when the default is
|
|
* changed to FP_PE.
|
|
*/
|
|
return ((double)(x + 0x1.8p52) - 0x1.8p52);
|
|
}
|
|
|
|
static inline float
|
|
rnintf(__float_t x)
|
|
{
|
|
/*
|
|
* As for rnint(), except we could just call that to handle the
|
|
* extra precision case, usually without losing efficiency.
|
|
*/
|
|
return ((float)(x + 0x1.8p23F) - 0x1.8p23F);
|
|
}
|
|
|
|
#ifdef LDBL_MANT_DIG
|
|
/*
|
|
* The complications for extra precision are smaller for rnintl() since it
|
|
* can safely assume that the rounding precision has been increased from
|
|
* its default to FP_PE on x86. We don't exploit that here to get small
|
|
* optimizations from limiting the rangle to double. We just need it for
|
|
* the magic number to work with long doubles. ld128 callers should use
|
|
* rnint() instead of this if possible. ld80 callers should prefer
|
|
* rnintl() since for amd64 this avoids swapping the register set, while
|
|
* for i386 it makes no difference (assuming FP_PE), and for other arches
|
|
* it makes little difference.
|
|
*/
|
|
static inline long double
|
|
rnintl(long double x)
|
|
{
|
|
return (x + __CONCAT(0x1.8p, LDBL_MANT_DIG) / 2 -
|
|
__CONCAT(0x1.8p, LDBL_MANT_DIG) / 2);
|
|
}
|
|
#endif /* LDBL_MANT_DIG */
|
|
|
|
/*
|
|
* irint() and i64rint() give the same result as casting to their integer
|
|
* return type provided their arg is a floating point integer. They can
|
|
* sometimes be more efficient because no rounding is required.
|
|
*/
|
|
#if defined(amd64) || defined(__i386__)
|
|
#define irint(x) \
|
|
(sizeof(x) == sizeof(float) && \
|
|
sizeof(__float_t) == sizeof(long double) ? irintf(x) : \
|
|
sizeof(x) == sizeof(double) && \
|
|
sizeof(__double_t) == sizeof(long double) ? irintd(x) : \
|
|
sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x))
|
|
#else
|
|
#define irint(x) ((int)(x))
|
|
#endif
|
|
|
|
#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */
|
|
|
|
#if defined(__i386__)
|
|
static __inline int
|
|
irintf(float x)
|
|
{
|
|
int n;
|
|
|
|
__asm("fistl %0" : "=m" (n) : "t" (x));
|
|
return (n);
|
|
}
|
|
|
|
static __inline int
|
|
irintd(double x)
|
|
{
|
|
int n;
|
|
|
|
__asm("fistl %0" : "=m" (n) : "t" (x));
|
|
return (n);
|
|
}
|
|
#endif
|
|
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
static __inline int
|
|
irintl(long double x)
|
|
{
|
|
int n;
|
|
|
|
__asm("fistl %0" : "=m" (n) : "t" (x));
|
|
return (n);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
#define breakpoint() asm("int $3")
|
|
#else
|
|
#include <signal.h>
|
|
|
|
#define breakpoint() raise(SIGTRAP)
|
|
#endif
|
|
#endif
|
|
|
|
/* Write a pari script to test things externally. */
|
|
#ifdef DOPRINT
|
|
#include <stdio.h>
|
|
|
|
#ifndef DOPRINT_SWIZZLE
|
|
#define DOPRINT_SWIZZLE 0
|
|
#endif
|
|
|
|
#ifdef DOPRINT_LD80
|
|
|
|
#define DOPRINT_START(xp) do { \
|
|
uint64_t __lx; \
|
|
uint16_t __hx; \
|
|
\
|
|
/* Hack to give more-problematic args. */ \
|
|
EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
|
|
__lx ^= DOPRINT_SWIZZLE; \
|
|
INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
|
|
printf("x = %.21Lg; ", (long double)*xp); \
|
|
} while (0)
|
|
#define DOPRINT_END1(v) \
|
|
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
|
#define DOPRINT_END2(hi, lo) \
|
|
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
|
(long double)(hi), (long double)(lo))
|
|
|
|
#elif defined(DOPRINT_D64)
|
|
|
|
#define DOPRINT_START(xp) do { \
|
|
uint32_t __hx, __lx; \
|
|
\
|
|
EXTRACT_WORDS(__hx, __lx, *xp); \
|
|
__lx ^= DOPRINT_SWIZZLE; \
|
|
INSERT_WORDS(*xp, __hx, __lx); \
|
|
printf("x = %.21Lg; ", (long double)*xp); \
|
|
} while (0)
|
|
#define DOPRINT_END1(v) \
|
|
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
|
#define DOPRINT_END2(hi, lo) \
|
|
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
|
(long double)(hi), (long double)(lo))
|
|
|
|
#elif defined(DOPRINT_F32)
|
|
|
|
#define DOPRINT_START(xp) do { \
|
|
uint32_t __hx; \
|
|
\
|
|
GET_FLOAT_WORD(__hx, *xp); \
|
|
__hx ^= DOPRINT_SWIZZLE; \
|
|
SET_FLOAT_WORD(*xp, __hx); \
|
|
printf("x = %.21Lg; ", (long double)*xp); \
|
|
} while (0)
|
|
#define DOPRINT_END1(v) \
|
|
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
|
#define DOPRINT_END2(hi, lo) \
|
|
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
|
(long double)(hi), (long double)(lo))
|
|
|
|
#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
|
|
|
|
#ifndef DOPRINT_SWIZZLE_HIGH
|
|
#define DOPRINT_SWIZZLE_HIGH 0
|
|
#endif
|
|
|
|
#define DOPRINT_START(xp) do { \
|
|
uint64_t __lx, __llx; \
|
|
uint16_t __hx; \
|
|
\
|
|
EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
|
|
__llx ^= DOPRINT_SWIZZLE; \
|
|
__lx ^= DOPRINT_SWIZZLE_HIGH; \
|
|
INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
|
|
printf("x = %.36Lg; ", (long double)*xp); \
|
|
} while (0)
|
|
#define DOPRINT_END1(v) \
|
|
printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
|
#define DOPRINT_END2(hi, lo) \
|
|
printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
|
|
(long double)(hi), (long double)(lo))
|
|
|
|
#endif /* DOPRINT_LD80 */
|
|
|
|
#else /* !DOPRINT */
|
|
#define DOPRINT_START(xp)
|
|
#define DOPRINT_END1(v)
|
|
#define DOPRINT_END2(hi, lo)
|
|
#endif /* DOPRINT */
|
|
|
|
#define RETURNP(x) do { \
|
|
DOPRINT_END1(x); \
|
|
RETURNF(x); \
|
|
} while (0)
|
|
#define RETURNPI(x) do { \
|
|
DOPRINT_END1(x); \
|
|
RETURNI(x); \
|
|
} while (0)
|
|
#define RETURN2P(x, y) do { \
|
|
DOPRINT_END2((x), (y)); \
|
|
RETURNF((x) + (y)); \
|
|
} while (0)
|
|
#define RETURN2PI(x, y) do { \
|
|
DOPRINT_END2((x), (y)); \
|
|
RETURNI((x) + (y)); \
|
|
} while (0)
|
|
#ifdef STRUCT_RETURN
|
|
#define RETURNSP(rp) do { \
|
|
if (!(rp)->lo_set) \
|
|
RETURNP((rp)->hi); \
|
|
RETURN2P((rp)->hi, (rp)->lo); \
|
|
} while (0)
|
|
#define RETURNSPI(rp) do { \
|
|
if (!(rp)->lo_set) \
|
|
RETURNPI((rp)->hi); \
|
|
RETURN2PI((rp)->hi, (rp)->lo); \
|
|
} while (0)
|
|
#endif
|
|
#define SUM2P(x, y) ({ \
|
|
const __typeof (x) __x = (x); \
|
|
const __typeof (y) __y = (y); \
|
|
\
|
|
DOPRINT_END2(__x, __y); \
|
|
__x + __y; \
|
|
})
|
|
|
|
/*
|
|
* ieee style elementary functions
|
|
*
|
|
* We rename functions here to improve other sources' diffability
|
|
* against fdlibm.
|
|
*/
|
|
#define __ieee754_sqrt sqrt
|
|
#define __ieee754_acos acos
|
|
#define __ieee754_acosh acosh
|
|
#define __ieee754_log log
|
|
#define __ieee754_log2 log2
|
|
#define __ieee754_atanh atanh
|
|
#define __ieee754_asin asin
|
|
#define __ieee754_atan2 atan2
|
|
#define __ieee754_exp exp
|
|
#define __ieee754_cosh cosh
|
|
#define __ieee754_fmod fmod
|
|
#define __ieee754_pow pow
|
|
#define __ieee754_lgamma lgamma
|
|
#define __ieee754_gamma gamma
|
|
#define __ieee754_lgamma_r lgamma_r
|
|
#define __ieee754_gamma_r gamma_r
|
|
#define __ieee754_log10 log10
|
|
#define __ieee754_sinh sinh
|
|
#define __ieee754_hypot hypot
|
|
#define __ieee754_j0 j0
|
|
#define __ieee754_j1 j1
|
|
#define __ieee754_y0 y0
|
|
#define __ieee754_y1 y1
|
|
#define __ieee754_jn jn
|
|
#define __ieee754_yn yn
|
|
#define __ieee754_remainder remainder
|
|
#define __ieee754_scalb scalb
|
|
#define __ieee754_sqrtf sqrtf
|
|
#define __ieee754_acosf acosf
|
|
#define __ieee754_acoshf acoshf
|
|
#define __ieee754_logf logf
|
|
#define __ieee754_atanhf atanhf
|
|
#define __ieee754_asinf asinf
|
|
#define __ieee754_atan2f atan2f
|
|
#define __ieee754_expf expf
|
|
#define __ieee754_coshf coshf
|
|
#define __ieee754_fmodf fmodf
|
|
#define __ieee754_powf powf
|
|
#define __ieee754_lgammaf lgammaf
|
|
#define __ieee754_gammaf gammaf
|
|
#define __ieee754_lgammaf_r lgammaf_r
|
|
#define __ieee754_gammaf_r gammaf_r
|
|
#define __ieee754_log10f log10f
|
|
#define __ieee754_log2f log2f
|
|
#define __ieee754_sinhf sinhf
|
|
#define __ieee754_hypotf hypotf
|
|
#define __ieee754_j0f j0f
|
|
#define __ieee754_j1f j1f
|
|
#define __ieee754_y0f y0f
|
|
#define __ieee754_y1f y1f
|
|
#define __ieee754_jnf jnf
|
|
#define __ieee754_ynf ynf
|
|
#define __ieee754_remainderf remainderf
|
|
#define __ieee754_scalbf scalbf
|
|
|
|
/* fdlibm kernel function */
|
|
int __kernel_rem_pio2(double*,double*,int,int,int);
|
|
|
|
/* double precision kernel functions */
|
|
#ifndef INLINE_REM_PIO2
|
|
int __ieee754_rem_pio2(double,double*);
|
|
#endif
|
|
double __kernel_sin(double,double,int);
|
|
double __kernel_cos(double,double);
|
|
double __kernel_tan(double,double,int);
|
|
double __ldexp_exp(double,int);
|
|
#ifdef _COMPLEX_H
|
|
double complex __ldexp_cexp(double complex,int);
|
|
#endif
|
|
|
|
/* float precision kernel functions */
|
|
#ifndef INLINE_REM_PIO2F
|
|
int __ieee754_rem_pio2f(float,double*);
|
|
#endif
|
|
#ifndef INLINE_KERNEL_SINDF
|
|
float __kernel_sindf(double);
|
|
#endif
|
|
#ifndef INLINE_KERNEL_COSDF
|
|
float __kernel_cosdf(double);
|
|
#endif
|
|
#ifndef INLINE_KERNEL_TANDF
|
|
float __kernel_tandf(double,int);
|
|
#endif
|
|
float __ldexp_expf(float,int);
|
|
#ifdef _COMPLEX_H
|
|
float complex __ldexp_cexpf(float complex,int);
|
|
#endif
|
|
|
|
/* long double precision kernel functions */
|
|
long double __kernel_sinl(long double, long double, int);
|
|
long double __kernel_cosl(long double, long double);
|
|
long double __kernel_tanl(long double, long double, int);
|
|
|
|
#endif /* !_MATH_PRIVATE_H_ */
|